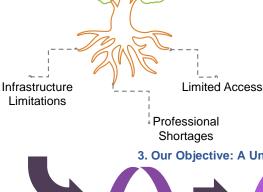
A Real-Time Point-of-Care Assistant on Raspberry Pi for Medical Diagnostics

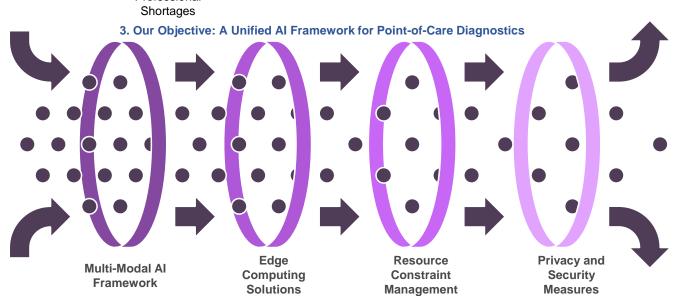
Priyam Chakraborty¹, Wajoud Noorani², Suman Chakraborty³

¹Department of Artificial Intelligence & Al4ICPS, IIT Kharagpur ²ChangeJar, ³Department of Mechanical Engineering, IIT Kharagpur

1. Root Causes in Patient Care

2. Challenges in Al for Point-of-Care Diagnostics




Existing Solutions

High cost, cloud dependency, singlemodality

Ideal Solutions

Low cost, local processing, multi-modality

Integrating textual and visual data analysis

Deploying AI models on Raspberry Pi

Developing solutions for limited resources

Implementing federated learning for data privacy

4. Our Methodology: System Characteristics

Characteristic

Multi-Modal ΑI

Edge Computing **Federated** Learning

Open-Source Framework

Data Support

N/A

Key Technologies

OpenBioLLM-70B, MobileNetV2. Vision Transformers TensorFlow Lite quantization, Knowledge distillation

Differential privacy, Asynchronous updates

HL7 FHIR, DICOM, Modular APIs

Optimization

Attention-based fusion, Supervised contrastive learning

Circular buffering, Asynchronous streaming

Multi-site learning, On-device fine-tuning Community-driven design, Extensive documentation

Performance

100% mAP in cross-modal retrieval

Real-time processing on Raspberry Pi

Privacy-preserving collaboration

Interoperability with clinical systems