
Spread
The testing tool behind snaps
November 2022

Testing must adapt and scale

• Fast

• Reliable

• Easy to write tests and understand the output

• Debug and reproduce errors

• Allow to test in various Operating Systems

Automated testing is crucial

Some important aspects :

What is Spread?

Spread is a tool to run tasks

● Allow parallel execution

● Support Containers, Cloud providers, etc

● Support different Operating Systems

● Not specific to testing

● Allow debugging

● Easy to integrate in CI

How it works?

.

.

.

Spread

Execution In

Parallel

Cloud

Local

Remote

Devices/Instances

under test

What Where How

How

• Specify backends, systems, suites and tasks to run in a single command

− Repeat executions

− Debug when a task fails

− Shell into the target machines

● Configure the project in a single configuration file (spread.yaml)

− Configure the number of worker (runners in parallel)

− Specify timeouts

− Setup how to prepare and restore project, suites and tasks
• ...

Spread provides a CLI and a configuration file to:

1) spread lxd:ubuntu-18.04-64:tests/main/abort

2) spread lxd:ubuntu-18.04-64:tests/main/

3) spread lxd:ubuntu-18.04-64:

4) spread lxd:

5) spread lxd:ubuntu-18.04-64:tests/main/ lxd:ubuntu-20.04-64:tests/main/abort

6) spread -debug google:ubuntu-core-18-64:tests/main/abort

7) spread -shell google:ubuntu-core-18-64:tests/main/abort

8) spread -repeat 10 google:ubuntu-core-18-64:tests/main/abort

9) spread -list google:ubuntu-core-18-64:tests/main/

Cli examples

Config example (spread.yaml)

project: snapd

environment:
 GOHOME: /home/gopath
 GOPATH: $GOHOME

backends:
 qemu:
 systems:
 - ubuntu-20.04-64:
 username: ubuntu
 password: ubuntu
 ...

path: /home/gopath
exclude:
 - .git

debug-each: |
 dmesg

kill-timeout: 10m

prepare: |
 echo “Preparing the project”

restore: |
 echo “Restoring the project”

suites:
 tests/main/:
 summary: This is the main suite
 backends: [google, qemu]
 systems: [ubuntu-*-64, debian-*]
 environment:
 SNAP_NAME: test-snapd-tools
 SNAP_ID: 23554
 prepare: |
 echo “Preparing the main suite”
 prepare-each: |
 echo “Preparing the task”
 restore-each: |
 echo “Restoring the task”
 restore: |
 echo “Restoring the main suite”

What

Project

Suite 1 Suite 2 ... Suite N

Task 1

Task 2

...

...

Task N

Task 1

Task 2

Task 1...

...

...

...

...

The projects is
compose by test
suites

Each suite contains
1 or more tasks

The tasks are
executed in the
target systems

Execution flow

Prepare

Execute

Restore

Prepare project
 -> Prepare Suite1
 ->-> Prepare Task1
 ->-> Execute Task1
 ->-> Restore Task1
 ->-> Prepare Task2
 ->-> Execute Task2
 ->-> Restore Task2
 -> Restore Suite1
 -> Prepare Suite2
 ->-> Prepare Task3
 ->-> Execute Task3
 ->-> Restore Task3
 -> Restore Suite2
Restore project

The tasks are also
executed

The project and the
suites are prepared
and restored

Data driven and Environment

Pretty much everything in Spread can be
customized with environment variables.

The values defined for those variables are
evaluated at the remote system

The variants is how spread allow to do data
driven testing.

Each variant key produces a single job
execution.

Task example

summary: Run snap sign to sign a model assertion

systems: [-ubuntu-core-*, -ubuntu-*-ppc64el, -fedora-*, -opensuse-*]

environment:
 VARIANT/stdin: stdin
 VARIANT/file: file

prepare: |
 . "$TESTSLIB"/mkpinentry.sh
 . "$TESTSLIB"/random.sh
 kill_gpg_agent

debug: |
 #shellcheck source=tests/lib/random.sh
 . "$TESTSLIB"/random.sh
 debug_random || true

execute: |
 echo "Creating a new key without a password"
 expect -f create-key.exp

 echo "Ensure we have the new key"
 snap keys|MATCH default

Where

Backend 1
...

Task 1...

...

...

...

...

Backend 2

System 2System 1System 2

System N

System 1

...

...

Available Backends

• LXD depends on the LXD container hypervisor available on Ubuntu 16.04 or later, and allows you to run

tasks using the local system alone

● QEMU depends on the QEMU emulator available from various sources and allows you to run tasks
using the local system alone even if those tasks depend on low-level features

● Ad-hoc (devices) allows scripting the procedure for allocating and deallocating systems directly in
the body of the backend

● Google iis easy to setup and use, and allows distributing your tasks to remote infrastructure in Google
Compute Engine (GCE)

● Linode is very simple to setup and use as well, and allows distributing your tasks over into remote
infrastructure runing in Linode's data centers.

● In progress – AWS and Openstack

Spread provides a set of backends to use:

Backend/Systems examples

qemu:
 systems:
 - ubuntu-16.04-64:
 username: ubuntu
 password: ubuntu
 - ubuntu-18.04-64:
 username: ubuntu
 password: ubuntu
 - ubuntu-18.04-32:
 username: ubuntu
 password: ubuntu
 - ubuntu-20.04-64:
 username: ubuntu
 password: ubuntu
 - ubuntu-22.04-64:
 username: ubuntu
 password: ubuntu
 - centos-7-64:
 username: centos
 password: centos
 - amazon-linux-2-64:
 username: ec2-user
 password: ec2-user
 - opensuse-tumbleweed-64:
 username: opensuse
 password: opensuse

 google:
 key: '$(HOST: echo "$SPREAD_GOOGLE_KEY")'
 location: snapd-spread/us-east1-b
 halt-timeout: 2h
 systems:
 - ubuntu-18.04-64:
 storage: 12G
 workers: 8
 - ubuntu-20.04-64:
 storage: 12G
 workers: 8
 - ubuntu-core-16-64:
 image: ubuntu-16.04-64
 workers: 6
 - ubuntu-core-18-64:
 image: ubuntu-18.04-64
 workers: 6
 - ubuntu-core-20-64:
 image: ubuntu-20.04-64
 workers: 6
 storage: 20G
 - ubuntu-core-22-64:
 image: ubuntu-22.04-64
 workers: 6
 storage: 20G

Demo

Our experience in Snapd

• Used as safety net on CI

• Used for development

• Used to validate on devices

• Used to run tests on nested machines

Spread integrated in CI

• Full run on every PR change

• Full run when master changes

• Run nightly tests

• Run cron jobs (other tasks)

• Validate core snaps

• Update Images used for testing

• ...

Spread integrated in CI

• Thanks

