
Daemon Snapper's
Workshop
How to make Snaps from System Daemons and Utilities

Till Kamppeter, Sergio Cazzolato

Your app everywhere, just in a Snap!

Introduction

What you need to know:

● Basic installing from source, little code tweaks, …
● Basic snapping, for example you should have attended one of:

○ Snapping like Hell(sworth)
○ ROS Deployment Workshop

Daemon (system service)

● Runs permanently, from boot/install to shutdown/uninstall
● No direct user interface (sometimes web admin interface)
● No terminal interaction
● Listens for events: Network, D-Bus, Domain socket, UDEV, …
● Acts in response to events

Daemons are not interactive, but this workshop is!

● We have a little daemon for you to try out everything: exampled
● It is a simple C program listening for raw data at a given port and storing it in a

file
● You will make a Snap of this little daemon
● You will learn all aspects of making it working under the confinements of a

Snap
● We will show different methods to fulfill the needed requirements
● We will apply advanced methods for using UDEV or for letting our daemon only

accept connections from Snaps which plug a given interface
● We will answer your questions and discuss your needs

Introduction

1. Defining and controlling a daemon in snapcraft.yaml
2. Handling directories and files the daemon uses
3. Controlling the snapped daemon
4. System users and groups
5. Managing upstream code patches
6. Daemon dependencies – 2 daemons in 1 Snap
7. Daemon dependencies – External daemon
8. UDEV Rules – What?! snapd does not support them. But …
9. Timers – Run a daemon only at certain times

10. Snap Mediation – Allow connection only for client Snaps plugging interface XYZ

Contents

This is a workshop, interactive, so you will try everything out on your laptop

● Have a suitable Linux distribution running on your laptop, ideally Ubuntu
● Have snapd and snapcraft installed
● Get the example from the following GitHub repository:

https://github.com/sergiocazzolato/daemon-snapper.git

● During the workshop you will edit the files (mainly snapcraft.yaml) and build
the Snap several times.

Hands-on exercises

https://github.com/sergiocazzolato/daemon-snapper.git

Defining and controlling a
daemon in snapcraft.yaml

Daemon Snapper's Workshop

Treat an app as a daemon

● Make sure your app is actually a daemon (running permanently)
● Define it as a daemon in snapcraft.yaml, under apps::

Apps:
 exampled:
 command: bin/exampled-run.sh
 daemon: simple

The daemon: entry has following modes available:

● simple: Daemon runs in foreground
● forking: Daemon forks background process and exits
● oneshot: System utility to run once on every boot, no daemon
● notify: Daemon notifies systemd

● For most modern daemons we use daemon: simple, daemons which are
forking by default we make non-forking via command line: cupsd -f

● We usually start the actual daemon through a wrapper script (here
exampled-run.sh) to use env variables and command line options

● There are further parameters for controlling the daemon, also to be used in
its apps: entry:
○ reload-command:, stop-command:, post-stop-command:: Additional

scripts to handle restart, shutdown and clean-up
○ start-timeout:, stop-timeout:, watchdog-timeout:: Timeouts for reporting

failure or killing a stuck daemon
○ before:, after:, timer:, … many more, see documentation:

https://snapcraft.io/docs/services-and-daemons

Treat an app as a daemon

https://snapcraft.io/docs/services-and-daemons

Handling directories and files
the daemon uses

Daemon Snapper's Workshop

Directories and files

● Daemons use several directories and files:
○ Configuration files
○ Log files
○ Data files
○ Spool directories
○ Domain sockets
○ …

● These are in /etc/…, /var/…, or /run/… by default, places not accessible from
a Snap

● Need to be all under /var/snap/NAME/…/…

● Methods to change the locations (not necessarily available in all daemons)
○ Command line options

■ Via wrapper script
■ Example: exampled -l $SNAP_COMMON/log.txt

○ Environment variables
■ Via snapcraft.yaml , in apps:

apps:
 exampled:
 environment:
 LOGFILE: $SNAP_COMMON/log.txt

● Via wrapper script

Directories and files

● Methods to change the locations (not necessarily available in all daemons)
○ Configuration file

■ Provide modified/patched config file
■ Let wrapper script modify config file to assure, even if user edits
■ Config file must be under /var/snap/NAME/… , not under /snap/NAME/… or

/etc/… (use the other methods described here for the config file location)

○ Modifying upstream code
■ Only open source, last mean
■ As patch for your Snap only
■ Actually upstream

● You are upstream maintainer
● Pull/Merge request
● Must work in Snap and in classic installation

○ if ((loc = getenv("SNAP_COMMON")) == NULL) loc = "/var";

Directories and files

Controlling the snapped
daemon

Daemon Snapper's Workshop

Snaps manage their own services without the need for manual intervention.
However, snapd offers a set of commands to allow a snap’s services to be inspected
and their statuses changed

These are the commands provided:

Use snap services to lists all the services added to the system by the currently
installed and enabled snaps

> $ snap services

Adding a snap name as an argument will list only those services added by that snap

> $ snap services daemon-example

Controlling the snapped daemon

Services are restarted using the snap restart <snap name> command. This may be
necessary if you’ve made custom changes to the snap application

> $ sudo snap restart daemon-example

The start and stop commands control whether a service should be currently running

> $ sudo snap stop daemon-example.exampled
> $ sudo snap start daemon-example.exampled

If you need to see the log output for a snap’s services, use the logs command

> $ sudo snap logs daemon-example
> $ sudo snap logs daemon-example.exampled

Controlling the snapped daemon

System users and groups

Daemon Snapper's Workshop

System users and groups

● Daemons will always be started as root (standard apps as the calling user)
○ Snapped daemon started by system boot or Snap install

● Daemon (or wrapper script) could drop privileges to a system user
● snapd does not allow use of the host system's users, like adm or lp, and does

not support adding system users and groups.
● Snapd has a user and a group, both named snap_daemon for this purpose
● To activate them, add to snapcraft.yaml (top level, no section):

system-usernames:
 snap_daemon: shared

● You will need to configure your daemon to use snap_daemon and not its own
user/group: Config file, build options, patch, …

● Documentation: https://snapcraft.io/docs/system-usernames

https://snapcraft.io/docs/system-usernames

Managing upstream code
patches

Daemon Snapper's Workshop

Managing upstream code patches

● Why do we need to modify (patch) the upstream code?
○ Daemons and system software can often get tricky to snap
○ Upstream's design did not take Snap into account
○ Upstream does not always accept the changes, or it takes time until the next

release
○ Even classic Debian/RPM packaging often needs patches

● Examples for patching needs
○ Directory and file locations used are hard-coded, no options, config, …
○ Daemon has to determine what the client plugs, to accept/deny inquiry
○ Daemon does operations which are not allowed under confinement (like

chown/chmod) but are also not needed under confinement

In snapcraft.yaml (only relevant lines, patch is in snap/local/ of your project
repository):

parts:
 exampled:
 override-build: |
 patch -p1 < $SNAPCRAFT_PROJECT_DIR/snap/local/log.patch
 snapcraftctl build

Managing upstream code patches

Daemon dependencies –
2 daemons in 1 Snap

Daemon Snapper's Workshop

Daemon dependencies – 2 daemons in 1 Snap

Method 1: Sequencing directives in apps: entries

● before: Supplies an ordered list of apps which are only started when our
daemon is up and running

● after: Supplies an ordered list of apps which must have been started before we
start

In snapcraft.yaml it looks like:

apps:
 exampleauxd:
 daemon: simple
 after: [exampled]

Method 2: In wrapper script check whether the other daemon is ready (wait if
not):

● When systemd reports other daemon ready but it is not the case (Usually
fault of that daemon)

● When we are not a daemon, but need a daemon of our Snap running (we
cannot use sequencing directives then)

Wrapper script checks in a loop until timeout:

● Runs status utility of other daemon
● Tries to access other daemon
● Checks presence of daemon's process …

Daemon dependencies – 2 daemons in 1 Snap

Daemon dependencies –
External daemon

Daemon Snapper's Workshop

Daemon dependencies – External daemons

● Sequencing directives before: and after: only work on apps in the same Snap
● So for a dependency on an external daemon (other Snap or classically installed),

method (2) of the previous section has to be used.
● The installation of a Snap can trigger the installation of another Snap (containing

the needed daemon)
○ Placeholder content interface with needed Snap as default-provider::

plugs:
 foo-install-example:
 interface: content
 content: foo
 default-provider: example
 target: $SNAP_DATA/foo

● Placeholder content interface is a dirty workaround
○ Snap has no explicit support for package dependencies

(Snap A needs Snap B)
○ Using this in seeded Snaps breaks the installation of the OS (bug)
○ Needs native solution in snapd

● The installation of a Snap cannot trigger the installation of a DEB or RPM
package.

Daemon dependencies – External daemons

UDEV Rules – What?! snapd
does not support them. But …

Daemon Snapper's Workshop

UDEV Rules

● UDEV rules are needed for daemons or utilities triggered by appearing or
disappearing of certain hardware

● Snap does not support supplying UDEV rules
● But a Snap plugging hardware-observe has enough access to observe

hardware appearing/disappearing with the udevadm utility -> workaround
● Wrapper script runs udevadm monitor to observe hardware
● It parses the output lines and filters them for the relevant hardware
● It starts/stops the actual daemon (for converting protocols, …) or triggers

utilities (for mounting files systems, loading firmware, creating print queue, …)
● Independent of whether actual app is daemon, the script with udevadm

monitor permanently running is a daemon -> daemon: simple
● Good News: On actual UDEV rule support by snapd is worked on

Example: ipp-usb: https://github.com/OpenPrinting/ipp-usb/

● Daemon for IPP-over-USB: Printer connected via USB to be accessed as network
printer (IPP, Internet Printing Protocol) on localhost

● Printer is USB device with USB protocol 7/1/4
● ipp-usb comes with UDEV rule for classic installation
● Plugging the printer triggers start of ipp-usb daemon, daemon stops by itself on

unplug, does not need to get triggered again by UDEV

UDEV Rules

https://github.com/OpenPrinting/ipp-usb/

● Check for already plugged printer:
udevadm trigger --verbose --dry-run --subsystem-match=usb
 --property-match=ID_USB_INTERFACES='*:070104:*'

● Observe USB devices appearing/disappearing:
udevadm monitor --kernel --subsystem-match=usb

● Filter 7/1/4 printer:
udevadm info --query property --path $DEV |
 grep -q ID_USB_INTERFACES=.*:070104:.*

● Script is snap/local/run-ipp-usb-server in the ipp-usb repository

UDEV Rules

UDEV Rules

Timers – Run a daemon only at
certain times

Daemon Snapper's Workshop

Timers – Run a daemon only at certain times

When creating snapcraft.yaml to build a new snap, a snap’s app could contain a
timer: property. Timer strings are used in both refresh.timer setting and timer
services as the timer.

A timer string is composed of one or more event sets, which are combined by using
commas (,,) as separators.

Each event set defines the weekdays and the time windows in which events may
occur.

If no weekdays are provided, the default is every day. If no time windows are
provided, the default is an arbitrary time in the day.

Timers – Run a daemon only at certain times

Some examples:

● 00:00-24:00/24 -> Every hour on the hour
● 00:00-24:00/48 -> Every 30 minutes
● 12:00-13:00/12 -> Every 5 minutes from 12:00 to 13:00
● 23:00 -> Every day at 23:00
● Mon,10:00,,Fri,15:10 -> Mondays at 10:00, Fridays at 15:10
● Mon,9:00~11:00,,Wed,22:00~23:00 -> Mondays, some time between

9:00 and 11:00, Wednesday, some time between 22:00 and 23:00
● Mon,Wed -> Monday and on Wednesday, at 0:00

Timers – Run a daemon only at certain times

Having this timer: Mon,Fri,10:00,15:00

 Assuming today is Sunday, the next 5 events are, in order:

● Monday 10:00
● Monday 15:00
● Friday 10:00
● Friday 15:00
● Monday 10:00

The next event will be scheduled inside the soonest opportunity that matches both
one of the provided weekdays and one of the provided time windows.

Snap Mediation – Allow
connection only for client Snaps
plugging interface XYZ

Daemon Snapper's Workshop

Snap Mediation – Allow connection only for client
Snaps plugging interface XYZ

● Really advanced topic: Requires changes in upstream code!
● Interfaces give Snaps controlled connection to the outside world, like via

○ Additional, more permissive AppArmor rules
○ Mounting certain file systems
○ …

● A program, usually a daemon, can determine whether a client is a Snap and
which interfaces it is plugging, so an interface can also
○ Give permission to a certain service which requires it

● This method of allowing access only to a Snap which plugs a certain interface is
called Snap Mediation.

● AFAIK Snap Mediation is used by CUPS and PulseAudio

Snap Mediation – Allow connection only for client
Snaps plugging interface XYZ

Example: The cups-control interface

● A Snap plugging cups-control has full access to CUPS, not only printing but
also administrative tasks, like creating queues, or deleting anyone's jobs

● Therefore cups-control is a "dangerous" interface, needs explicit permission
for auto-connection

● So we have also a "safe" interface named cups only for printing, which
auto-connects

● But how to stop admin tasks when only cups is plugged?
● What understands IPP (Internet Printing Protocol) and knows what are

administrative tasks is solely CUPS, resembling this in snapd would be a
nightmare …

Snap Mediation – Allow connection only for client
Snaps plugging interface XYZ

● So I have modified the CUPS daemon to check
○ Inquiry is administrative? No -> Allow, Yes -> Continue
○ Is client a confined Snap? No -> Allow, Yes -> Continue
○ Does client plug cups-control? No-> Deny, Yes -> Allow

● If client is confined Snap, AppArmor context is "snap.NAME. …", to be
determined with libapparmor

● Interfaces which the client is plugging can be determined with libsnapd-glib
● See source code of CUPS, scheduler/auth.c.

Snap Mediation – Allow connection only for client
Snaps plugging interface XYZ

● Note that the Snap Mediation is only in CUPS 2.4.x or later
● The CUPS Snap is only available with Snap Mediation (sufficiently new CUPS)
● To assure that a Snap plugging cups does not hit an old, unprotected CUPS

daemon and could manage it mess it up, we do as follows:
○ The cups interface only connects to the domain socket of the CUPS Snap

(which has Snap Mediation)
○ In the future (Ubuntu 23.04 or all-Snap distro) the CUPS Snap will be the actually

used printing system
○ If the actually used printing system is a classically installed CUPS, the CUPS

Snap's CUPS works as proxy/firewall, blocks admin requests and passes on print
jobs

⇒ ⇒ ⇒ So be careful when introducing Snap Mediation, there can be old
versions of your target daemon still around!!

● First of all, for further info and more detail – The Documentation:
○ https://snapcraft.io/docs
○ https://snapcraft.io/docs/services-and-daemons
○ https://snapcraft.io/docs/system-usernames

● More questions and discussion – The Forum:
○ https://forum.snapcraft.io/

● More hands-on experience with our snappers – The tutorial series going on:
○ Deploying Flutter apps on Linux Desktop (including snapping them)

Right after lunch, 14:00 -15:30, Palmkova 1 (This room)
○ Snapping Desktop Applications (GNOME/GTK and KDE/Qt)

Right after lunch, 14:00 -15:30, Palmkova 2 (Room next to us)

Questions, Discussion, Links, and more …

https://snapcraft.io/docs
https://snapcraft.io/docs/services-and-daemons
https://snapcraft.io/docs/system-usernames
https://forum.snapcraft.io/

