
Deploying Flutter apps on
Linux Desktop
Carlos Nihelton <carlos.nihelton@canonical.com>

Heather Ellsworth <heather.ellsworth@canonical.com>

Ubuntu Summit - November 2022

mailto:carlos.santanadeoliveira@canonical.com
mailto:heather.ellsworth@canonical.com

• What is Flutter
• What are snaps
• How to snap a Flutter app with a few different examples

What you will learn:

Foundational Knowledge

Section #1

Flutter - What is it?

Flutter - What is?

It’s all about open source

Flutter - What is?

The Ubuntu community has a stake on the Linux support

Flutter - What is it?

Write once in a high level language (Dart)

Run natively in the target platform.

Flutter - What is it?

● Widgets are immutable. State is decoupled from the widget.
○ They are translated at runtime into mutable elements and render objects which are handled by the

framework transparently* from the developer’s perspective.

● UI = f(state)
○ Widget build methods are functional programming
○ The framework supports multiparadigm programming, though.

Flutter is all about reactive UI

The State of Flutter on Desktop

Flutter app deployment

Being a native app means it must have some system library dependencies.

- OpenGL, OpenSSL, GNU Lib C, …

It also mean that it may have other runtime dependencies, not managed by
the distro:

● Installing those system wide may interfere with other Flutter apps.
● Packaging becomes non-trivial.

How a Flutter app binary looks like?

Your app assets

 (images, fonts,
translations, etc)

Your Dart code compiled to machine code.
The Flutter engine.

The platform embedder, aka executable.

How a Flutter app binary looks like?

Snap - What is it?

● Containerized (LXD) applications
● Safer than traditional debs
● Packaged dependencies along with app
● Faster pipeline to user
● Massive snap store: https://snapcraft.io
● Written in yaml
● snapcraft build tool, snapd daemon
● Slots & Plugins
● Extensions
● Interfaces

https://snapcraft.io

snapcraft.yaml

Common pieces:

● metadata (name, description, version, etc.)

● apps - what binaries we are building

● parts - what pieces go into the binaries

Basic Flutter snap

Section #2

WIP Core22 Flutter Plugin

sudo snap refresh snapcraft
--channel=latest/edge/pr-3952

or

sudo snapcraft install snapcraft
--channel=latest/edge/pr-3952

We now have a Core 22 Flutter plugin for snapcraft! (kinda)

Create basic flutter app

Simple counter: https://docs.flutter.dev/get-started/test-drive?tab=terminal

$ flutter create my_app

$ cd my_app

$ flutter run

https://docs.flutter.dev/get-started/test-drive?tab=terminal

Let’s snap it! - metadata section

name: flutter-app

grade: stable # must be 'stable' to release into candidate/stable channels

confinement: strict

base: core22

version: '0.1'

summary: 'Barebones Flutter app'

description: 'count things'

Let’s snap it! - apps section

apps:

 flutter-app:

 command: bin/myapp

The executable name must
match the app name declared
in the app’s pubspec.yaml file

Let’s snap it! - parts section

parts:

 flutter-app:

 plugin: flutter

 source: .

Snapcraft gotchas

Section #4

Common issues you may run into…

Docker - sets ip tables that prevent lxd containers from reaching internet

How to disable:

$ iptables -P FORWARD ACCEPT

Setup lxd before trying to snap something:

$ sudo snap install lxd

$ lxd init # just hit enter through all of the defaults

Intermediate Flutter snap

Section #3

Intermediate application

The pensieve

https://github.com/CarlosNihelton/pensieve

Oops

Let’s add the required build package

Advanced
 Flutter snap

Section #4

Advanced application

GitJournal

https://github.com/GitJournal/GitJournal

Let’s modernize this snap

There is a core18 based snapcraft.yaml in
that repository to build a classic snap for
this app.

Let’s modernize it:

- core22
- Strict confinement

Accessing $HOME

Snaps are by design not allowed to access
personal files inside $HOME.

Snaps can have their own $HOME directory,
which is the safe choice for most cases.

This app looks for ~/Documents by using the
Flutter path_provider package, which, for Linux,
relies on xdg-user-dirs.

getDocumentsPath() => ~/Documents

Journal files are written into ~/Documents

Accessing network and inquiring
network-manager

The app wants to know if there is network
available in order to fetch and pull data from the
Git provider.

Inquiring network-manager through DBus is
possible with the network-manager interface.

System file pickers

Zenity is not staged as part of gnome extension.

- Reasons for doing so include the fact that snaps are not supposed to load read/write user or system
files, by default.

The app allows loading custom SSH keys, which require opening a file picker.

Stage zenity package

Zenity

SSH can be quite tricky

The ssh client inside the snap needs to read the
user’s “~/.ssh/known_hosts” file. Failing to read
the file is treated the same as if it was empty.

Test (from outside the snap env) if GitHub is in
your SSH local hosts. If not, the SSH client will
prompt you to verify and accept the fingerprint.

Thank you. Questions?

