
Improving Snap maintenance:

Automating Snap updates
on new upstream releases

An interactive workshop

Till Kamppeter <till.kamppeter@gmail.com>

Jesús Soto <jesus.soto@canonical.com>

Ubuntu Summit - November 2023

mailto:till.kamppeter@gmail.com
mailto:jesus.soto@canonical.com

Introduction

The method described in this workshop was originally developed by
Heather Ellsworth. Thanks a lot to her for this great work.

It was originally planned that she is co-hosting this
workshop, but unfortunately, she has left Canonical.

Heather Ellsworth

Please download these slides!

● You find them on the Ubuntu Summit web site, find this workshop on the
timetable, open its description page and go to "Presentation Materials" at
the bottom.
https://events.canonical.com/event/31/contributions/217/

● This way you can browse the slides in your own pace while setting up and
doing the exercises.

● And you can copy and paste command lines and example code.
● You can click the numerous links.
● You can also read the advanced topics which will not get necessarily

presented here.
● May the source (and these slides) always be with you!

Introduction

https://events.canonical.com/event/31/contributions/217/

What you will learn

● GitHub actions and workflows
● Workflow to auto-update your snapcraft.yaml if there is a new release in

the upstream project of one of its parts
● Auto-building/uploading your Snap to the Snap Store
● Development branch and stable branch

What you need to know

● Snap packaging basics (esp. snapcraft.yaml)
● Basics in using the GIT version control system

Introduction

Why do I organize and host Snap workshops on conferences?

On this conference there are many free software app developers and also potential
snappers in the community.

● Upstream should snap: Free software projects snap their apps by themselves.
○ They know the ins and outs and the quirks of their own apps
○ They can most easily adapt their apps for snapping
○ The one a user could trust most is the creator of the app

● If upstream does not do it we need volunteers in the community for app
snapping projects, like snapcrafters
○ Well-known projects like snapcrafters have a high degree of trustworthiness,

too.

Introduction

Setup

Your application everywhere, just in a Snap!

This is a workshop, interactive, so you will try everything on your laptop!

You need

● Access to the conference Wi-Fi (SSID: Ubuntu-Summit Password: Latvia2023)
● A web browser
● A text editor
● GIT command line utilities (usually the "git" package)

Accounts (you should already have these, as experienced developer/bug reporter)

● GitHub - https://github.com/ To host the snapping (snapcraft.yaml, …)
● Launchpad - https://launchpad.net/ To setup auto-build/upload

Setup

https://github.com/
https://launchpad.net/

Please fork the sample repositories to your GitHub account (so that you can push
to them, tag them, and change their settings):

● https://github.com/tillkamppeter/versioning-example-app-1
● https://github.com/tillkamppeter/versioning-example-app-2
● https://github.com/tillkamppeter/versioning-example-app-3
● https://github.com/tillkamppeter/snap-automation-exercise

Clone your forks of the 4 repositories (via SSH) to your local machine for local
editing:

● git clone …

Edit snapcraft.yaml to use your forks of the apps

Setup

https://github.com/tillkamppeter/versioning-example-app-1
https://github.com/tillkamppeter/versioning-example-app-2
https://github.com/tillkamppeter/versioning-example-app-3
https://github.com/tillkamppeter/snap-automation-exercise

What is this all about?

Your application everywhere, just in a Snap!

● Imagine you are snapping an application, app-1.
● Your Snap is built from the app-1's upstream source code but also needs the

code of two additional repositories (libraries, command line utilities, …), app-2,
and app-3.

● The 3 upstream sources are loaded and built by 3 parts in the
snapcraft.yaml of snap-automation-exercise.

● Now imagine that the developers of app-1, app-2, and app-3 are very busy
developing and release frequently …

● … and you are very busy with a lot of things …
● … and your users complain that your Snap is not up-to-date with upstream …

-> We will auto-update the Snap on new upstream releases!

What is this all about?

Requirements

● Your snapping (snapcraft.yaml and auxiliary files) must be hosted on
GitHub
○ GitHub allows automatic tasks on a repository via workflows
○ All needed scripting is available on GitHub

● The upstream sources must be GIT repositories (most are nowadays)
○ Each release has to get tagged with the version number

Our example has everything in GitHub repositories and therefore fulfills the
requirements.

What is this all about?

Have a look into the snapcraft.yaml file of snap-automation-exercise

● There are 3 parts, named app-1, app-2, app-3. You have forked their upstream
source repositories.

parts:
 app-1:

source: https://github.com/tillkamppeter/versioning-example-app-1
source-type: git

What is this all about?

https://github.com/tillkamppeter/versioning-example-app-1

● As app-1 is your actual application, the Snap's version number is taken from
app-1

name: snap-automation-example
adopt-info: app-1
[...]
parts:
 app-1:
 source: https://github.com/tillkamppeter/versioning-example-app-1
 source-type: git
 plugin: make
 override-pull: |
 craftctl default
 craftctl set version=$(git describe --tags --abbrev=10)

What is this all about?

https://github.com/tillkamppeter/versioning-example-app-1

● Update their URLs in snapcraft.yaml to use your forks, commit/push the
change

parts:
 app-1:
 source: https://github.com/YOU/versioning-example-app-1

● If your laptop has snapcraft installed you can build and install this Snap.
Running it simply displays the versions of your Snap and the components.

What is this all about?

https://github.com/tillkamppeter/versioning-example-app-1

GitHub Automation

Your application everywhere, just in a Snap!

GitHub workflows

● Defines a task to be done automatically
● On each commit or pull request (like CI tests, test builds, …)
● Time-based (cron job)
● Manually triggered in the GitHub web interface

● One *.yml file per workflow in .github/workflows/ of repository
● Trigger rules (on:)
● Tasks to do (jobs:, steps:) as shell scripts (run: |) or as GitHub

actions (uses:)
● GitHub actions are tasks defined in other GitHub repositories

● Logging in web interface, under "Actions"
● E-mail notification on failure

GitHub Automation

GitHub actions

● Kind of library functions for GitHub workflows

● Defined by the action.yml file in a GitHub repository.

● File defines exactly 1 action => Usually an action is defined by one dedicated GitHub
repo.

● When calling an action one can define a branch or tag => More than 1 action from 1 repo
possible via branches or tags.

● Many standard actions under https://github.com/actions …

● … but everyone could define their own actions

GitHub Automation

https://github.com/actions

Let's create our workflow!

Your application everywhere, just in a Snap!

● Create .github/workflows/auto-update.yml, just copy from
gnome-text-editor (this file is always the same)
○ https://github.com/ubuntu/gnome-text-editor/blob/stable/.github/workflows/auto-update.yml

name: Push new tag update to stable branch
on:
 schedule:
 # Daily for now
 - cron: '9 7 * * *'
 workflow_dispatch:
jobs:
 update-snapcraft-yaml:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout this repo
 uses: actions/checkout@v3
 - name: Run desktop-snaps action
 uses: ubuntu/desktop-snaps@stable
 with:
 token: ${{ secrets.GITHUB_TOKEN }}
 repo: ${{ github.repository }}

Let's create our workflow!

https://github.com/ubuntu/gnome-text-editor/blob/stable/.github/workflows/auto-update.yml

Action required on each new upstream release …

… but we cannot trigger a workflow by external repositories

● Therefore we run it simply every 24 hours
● Plus option for manual triggering via GitHub web interface

on:
 schedule:
 # Daily for now
 - cron: '9 7 * * *'
 workflow_dispatch:

Let's create our workflow!

Define what to do:

● We run on current Ubuntu, scripting was created on Ubuntu …
● Steps:

○ Download the repo using a standard action from GitHub
○ Check upstream versions and update snapcraft.yaml with our own action

● uses: org/repo@tag or uses: org/repo@branch
○ Repo/branch needs action.yml file to describe action

● with: for parameter list
○ repo: Our repository for the script to act on
○ token: Authorizes the script to modify our repository

Let's create our workflow!

Our Snap updater action:

● Called by uses: ubuntu/desktop-snaps@stable
=> "stable" branch of https://github.com/ubuntu/desktop-snaps/

● action.yaml describes what has to be done
○ Defines input and output parameters
○ Allows running shell scripts or other actions, like a workflow

● Action calls script updatesnap/updatesnapyaml.py for actual task:
○ Finds latest release tag of source of each part in snapcraft.yaml
○ Compares with tag used in snapcraft.yaml and updates

● In case of a change, the action commits and pushes the change

Let's create our workflow!

https://github.com/ubuntu/desktop-snaps/

Edit your snapcraft.yaml

Your application everywhere, just in a Snap!

Required to make a part getting auto-updated:

● Load source of stable releases from GitHub repo, not from tarball
● Select version by release tag of upstream repository
● Add source-depth: 1 to mark for auto-update (and loads more quickly)

parts:
 app-1:
 source: https://github.com/tillkamppeter/versioning-example-app-1
 source-type: git
 source-tag: '0.1.4'
 source-depth: 1

Edit your snapcraft.yaml

https://github.com/tillkamppeter/versioning-example-app-1

Optional, to fine-tune the updating:

● No update to a new generation, often incompatible changes (API, …)
● Skip versions like 1.91, 2.99, … these are usually betas
● More control directives available, like format: "pixman-%M.%m.%R"

parts:
 app-1:
 [...]
 source-depth: 1
ext:updatesnap
version-format:
lower-than: '2'
no-9x-revisions: true

Edit your snapcraft.yaml

Let's go!

Your application everywhere, just in a Snap!

Allow the workflow to push changes:

● In the GitHub web interface select "Settings" tab
● "Actions" -> "General" (Left side bar, under "Code and Automation")
● Set "Actions permissions" to "Allow all actions and reusable workflows"
● Set "Workflow permissions" to "Read and write permissions"

Let's go!

Test it:

● "Release" a new VERSION of one or more of app-1, app-2, app-3
○ Edit the executable to display VERSION
○ git commit; git tag VERSION; git push; git push --tags
○ Make sure VERSION is newer than the current one

● Within 24 hours your snapcraft.yaml should get auto-updated
● This workshop is only 1 hour, so let us trigger manually:

○ In the GitHub web interface of the Snap go to "Actions" tab
○ On the left, select "Push new tag update to the stable branch"
○ Click "Run workflow" button and choose the branch
○ You get a new entry in the list, click it and see the logs
○ Check the snapcraft.yaml in your repo

Let's go!

Auto-update right into the
Snap Store!

Your application everywhere, just in a Snap!

Two methods of building your Snap on every GitHub commit:

1. Directly in the Snap Store
● Go to the Snap Store publisher web interface: https://snapcraft.io/snaps
● Select your Snap
● Click "Builds" tab: https://snapcraft.io/YOUR-SNAP/builds
● Follow instructions

Advantage:

● No Launchpad interaction/account needed

Disadvantage:

● Only commits to master branch uploaded into Edge channel

Auto-update right into the Snap Store!

https://snapcraft.io/snaps
https://snapcraft.io/YOUR-SNAP/builds

2. Control via Launchpad

● Go to https://launchpad.net/
● Select "Register a project" (on the right)
● Fill in the forms (2 pages)
● On the project page go to "Code" tab
● Click "Configure Code"
● Select "GIT" at the top
● Under "Link or import an existing repository" select "Import a Git

repository hosted somewhere else"
● Enter your "https://github.com/…" repository URL
● Now each commit is automatically mirrored to the Launchpad GIT

Auto-update right into the Snap Store!

https://launchpad.net/
https://github.com/%E2%80%A6

● Under "Branches" you see your GitHub repo's branches
● Select the one you are auto-updating with our workflow
● Under "Related snap packages" click "Create snap package"
● Fill the field "Snap recipe name:"
● Choose the desired architectures under "Processors:"
● Mark "Automatically build when branch changes" to get a build on each

push
● Optionally mark "Automatically upload to store" and choose destination

channel under "Store channels", drop-down "Risk".
● Submit via "Create Snap package", no other settings needed.

Auto-update right into the Snap Store!

Advantages:

More configurability

One Snap build/upload recipe for each branch

Upload into desired Snap Store channel

Optionally just building, without upload

Auto-update right into the Snap Store!

At Ubuntu we do (ex.: https://github.com/ubuntu/gnome-calculator/)

● "stable" branch for releases
○ Default branch
○ Update automation on upstream releases
○ Auto-upload into "candidate" channel in Snap Store
○ Promotion into "stable" after manual test

● "edge" branch for development
○ Auto-upload into "edge" channel in Snap Store
○ Merge changes into stable branch as needed

Auto-update right into the Snap Store!

https://github.com/ubuntu/gnome-calculator/

Summary

Your application everywhere, just in a Snap!

Steps for full update automation

● Add .github/workflows/auto-update.yml
○ Copy from gnome-text-editor or similar

● Edit snapcraft.yaml
○ Source code needs to be downloaded from GIT
○ source-tag: … to select release tag

○ source-depth: 1 to mark as to be auto-updated
○ Additional parameters via # ext:updatesnap

● Allow the workflow to push changes to your GIT repository

● Set Launchpad project GIT to auto-sync from your GitHub repo and set this
GIT to auto-build and -upload Snap

Summary

https://github.com/ubuntu/gnome-text-editor/blob/stable/.github/workflows/auto-update.yml

Get the perfect snapper –
More info/Links

Your application everywhere, just in a Snap!

● Ubuntu blog by Heather Ellsworth and Sergio Costas Rodríguez about the
Snap updating automation described in this workshop:
○ https://ubuntu.com/blog/improving-snap-maintenance-with-automation

● Real-live example Snaps using update automation:
○ https://github.com/ubuntu/gnome-text-editor
○ https://github.com/ubuntu/gnome-calculator

More info/links:

https://ubuntu.com/blog/improving-snap-maintenance-with-automation
https://github.com/ubuntu/gnome-text-editor
https://github.com/ubuntu/gnome-calculator

● Getting started with snapping apps, with GNOME desktop apps as example, in
the workshop "Your app everywhere, just in a Snap" (links to slides and
exercises/examples)
○ https://events.canonical.com/event/35/contributions/291/

● More Snap magic, not only for daemons, in the "Daemon Snapper's
workshop" (links to slides and exercises/examples)
○ https://events.canonical.com/event/2/contributions/42/

● Workshop GNOME app Snap example from Olivier Tilloy, each commit in this
GIT repository is one step of the snapcraft.yaml development:
○ https://git.launchpad.net/~osomon/+git/secrets-snap/log/?h=main

● Want to snap something cute? Qt/KDE apps? Jesús' talk from Akademy 2023:
○ https://github.com/jssotomdz/qt-snaps

More info/links:

https://events.canonical.com/event/35/contributions/291/
https://events.canonical.com/event/2/contributions/42/
https://git.launchpad.net/~osomon/+git/secrets-snap/log/?h=main
https://github.com/jssotomdz/qt-snaps

● Ubuntu blogs from Oliver Smith about optimizing performance of Snaps:
○ https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-1
○ https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-2

○ https://ubuntu.com/blog/improving-firefox-snap-performance-part-3
○ https://ubuntu.com/blog/firefox-snap-updates-and-upgrades

● And to know why we all are snapping like hell (all-Snap Ubuntu Core Desktop):
○ https://ubuntu.com/blog/ubuntu-core-an-immutable-linux-desktop

● Want to watch some snappy videos? Here we go:
○ https://www.youtube.com/watch?v=TfB6QwR2GYg
○ https://www.youtube.com/watch?v=ido6kGmSHWI

More info/links:

https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-1
https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-2
https://ubuntu.com/blog/improving-firefox-snap-performance-part-3
https://ubuntu.com/blog/firefox-snap-updates-and-upgrades
https://ubuntu.com/blog/ubuntu-core-an-immutable-linux-desktop
https://www.youtube.com/watch?v=TfB6QwR2GYg
https://www.youtube.com/watch?v=ido6kGmSHWI

● And at OpenPrinting we are also snappy:
○ https://snapcraft.io/publisher/openprinting
○ http://www.openprinting.org/
○ https://openprinting.github.io/about-us/
○ https://openprinting.github.io/news/
○ https://github.com/OpenPrinting

More info/links:

https://snapcraft.io/publisher/openprinting
http://www.openprinting.org/
https://openprinting.github.io/about-us/
https://openprinting.github.io/news/
https://github.com/OpenPrinting

