Improving Snap maintenance:

Automating Snap updates
on new upstream releases

An interactive workshop

Till Kamppeter <Lill.kamppeter@gmail.com>

JesUs Soto <jesus.soto@canonical.com>

Ubuntu Summit - November 2023 CAN@NICAL UbuntU@

mailto:till.kamppeter@gmail.com
mailto:jesus.soto@canonical.com

Introduction

The method described in this workshop was originally developed by
Heather Ellsworth. Thanks a lot to her for this great work.

It was originally planned that she is co-hosting this
workshop, but unfortunately, she has left Canonical.

Heather Ellsworth

Introduction

Please download these slides!

e You find them on the Ubuntu Summit web site, find this workshop on the
timetable, open its description page and go to "Presentation Materials" at
the bottom.
https://events.canonical.com/event/31/contributions/217/

e This way you can browse the slides in your own pace while setting up and
doing the exercises.

And you can copy and paste command lines and example code.

e You can click the numerous links.

e You can also read the advanced topics which will not get necessarily
presented here.

e May the source (and these slides) always be with you!

https://events.canonical.com/event/31/contributions/217/

Introduction

What you will learn

GitHub actions and workFflows
Workflow to auto-update your snapcraft.yaml if there is a new release in
the upstream project of one of its parts

e Auto-building/uploading your Snap to the Snap Store

e Development branch and stable branch

What you need to know

e Snap packaging basics (esp. snapcraft.yaml)
e Basicsin using the GIT version control system

Introduction

Why do | organize and host Snap workshops on conferences?

On this conference there are many free software app developers and also potential
snappers in the community.

e Upstream should snap: Free software projects snap their apps by themselves.
o They know the ins and outs and the quirks of their own apps
o They can most easily adapt their apps for snapping
o The one a user could trust most is the creator of the app
e [fupstream does not do it we need volunteers in the community for app
snapping projects, like snapcrafters
o Well-known projects like snapcrafters have a high degree of trustworthiness,
too.

Your application everywhere, just in a Snap!

Setup

This is a workshop, interactive, so you will try everything on your laptop!

You need

Access to the conference Wi-Fi (SSID: Ubuntu-Summit Password: Latvia2023)
A web browser

A text editor

GIT command line utilities (usually the "git" package)

Accounts (you should already have these, as experienced developer/bug reporter)

e GitHub - https://github.com/ To host the snapping (snapcraft.yaml, ...)
e Launchpad - https://launchpad.net/ To setup auto-build/upload

https://github.com/
https://launchpad.net/

Please fork the sample repositories to your GitHub account (so that you can push
to them, tag them, and change their settings):

https://github.com/tillkamppeter/versioning-example-app-1
https://aithub.com/tillkamppeter/versioning-example-app-2
https://qithub.com/tillkamppeter/versioning-example-app-3
https://github.com/tillkamppeter/snap-automation-exercise

Clone your Forks of the 4 repositories (via SSH) to your local machine for local
editing:

e gitclone...

Edit snapcraft.yaml to use your forks of the apps

https://github.com/tillkamppeter/versioning-example-app-1
https://github.com/tillkamppeter/versioning-example-app-2
https://github.com/tillkamppeter/versioning-example-app-3
https://github.com/tillkamppeter/snap-automation-exercise

Your application everywhere, just in a Snap!

What is this all about?

What is this all about?

e Imagine you are snapping an application, app-1.
Your Snap is built from the app-1's upstream source code but also needs the
code of two additional repositories (libraries, command line utilities, ...), app-2,
and app-3.

e The 3 upstream sources are loaded and built by 3 parts in the
snapcraft.yaml of snap-automation-exercise.

e Now imagine that the developers of app-1, app-2, and app-3 are very busy
developing and release frequently ...

e ...andyou are very busy with a lot of things ...
....and your users complain that your Snap is not up-to-date with upstream ...

-> We will auto-update the Snap on new upstream releases!

What is this all about?

Requirements

e Your snapping (snapcraft.yaml and auxiliary files) must be hosted on
GitHub
o GitHub allows automatic tasks on a repository via workflows
o All needed scripting is available on GitHub
e The upstream sources must be GIT repositories (most are nowadays)
o Eachrelease has to get tagged with the version number

Our example has everything in GitHub repositories and therefore Fulfills the
requirements.

What is this all about?

Have a look into the snapcraft.yaml file of snap-automation-exercise

e There are 3 parts, named app-1, app-2, app-3. You have forked their upstream
source repositories.

parts:

app-1:
source: https: github.com/tillkamppeter/versioning—-example—app—1

source-type: git

https://github.com/tillkamppeter/versioning-example-app-1

What is this all about?

e Asapp-1isyour actual application, the Snap's version number is taken from
app-1

name: snap-automation-example
adopt-info: app-1
[...]
parts:
app-1:
source: https://github.com/tillkamppeter/versioning-example—-app-1

source-type: git

plugin: make

override-pull: |
craftctl default

craftctl set version=$(git describe --tags —--abbrev=10)

https://github.com/tillkamppeter/versioning-example-app-1

What is this all about?

e Update their URLs in snapcraft.yaml to use your forks, commit/push the
change

parts:

app-1:
source: https: github.com/YOU/versioning—-example—app—-1

e Ifyour laptop has snapecraft installed you can build and install this Snap.
Running it simply displays the versions of your Snap and the components.

https://github.com/tillkamppeter/versioning-example-app-1

Your application everywhere, just in a Snap!

GitHub Automation

GitHub Automation

GitHub workflows

e Defines a task to be done automatically
e On each commit or pull request (like Cl tests, test builds, ...)
e Time-based (cron job)
e Manually triggered in the GitHub web interface
e One *.yml file per workflow in .github/workflows/ of repository
e Triggerrules (on:)
e Taskstodo (jobs:, steps:) as shell scripts (run: |) or as GitHub
actions (uses:)
e GitHub actions are tasks defined in other GitHub repositories
e Loggingin web interface, under "Actions"
e E-mail notification on failure

GitHub Automation

GitHub actions
e Kind of library functions for GitHub workFflows
e Defined by the action.yml file in a GitHub repository.

e File defines exactly 1 action => Usually an action is defined by one dedicated GitHub
repo.

e When calling an action one can define a branch or tag => More than 1 action from 1 repo
possible via branches or tags.

e Many standard actions under https://github.com/actions ...

e ... but everyone could define their own actions

https://github.com/actions

Your application everywhere, just in a Snap!

Let's create our workflow!

Let's create our workflow!

e (reate .github/workflows/auto-update.yml, just copy from

gnome-text-editor (this file is always the same)
o https://github.com/ubuntu/gnome-text-editor/blob/stable/.github/workflows/auto-update.yml

name: Push new tag update to stable branch
on:
schedule:
Daily for now
- cron: '9 7 * K& &7
workflow dispatch:
jobs:
update-snapcraft-yaml:
runs-on: ubuntu-latest
steps:
- name: Checkout this repo
uses: actions/checkout@v3
- name: Run desktop-snaps action
uses: ubuntu/desktop-snaps@stable
with:
token: ${{ secrets.GITHUB TOKEN }}
{

repo: ${{ github.repository }}

https://github.com/ubuntu/gnome-text-editor/blob/stable/.github/workflows/auto-update.yml

Let's create our workflow!

Action required on each new upstream release...
... but we cannot trigger a workFflow by external repositories

e Therefore we run it simply every 24 hours
e Plus option for manual triggering via GitHub web interface

on:
schedule:
Daily for now
- cron: '9 7 * * I

workflow dispatch:

Let's create our workflow!

Define what to do:

e We run on current Ubuntu, scripting was created on Ubuntu ...
e Steps:
o Download the repo using a standard action from GitHub
o Check upstream versions and update snapcraft.yaml with our own action
e uses: org/repoltagoruses: org/repo@branch
o Repo/branch needs action.yml file to describe action
e with: for parameter list
o repo: Ourrepository for the script to act on
o token: Authorizes the script to modify our repository

Let's create our workflow!

Our Snap updater action:

Called by uses: ubuntu/desktop-snaps@stable
=> "stable" branch of https://github.com/ubuntu/desktop-snaps/
action.yaml describes what has to be done
o Defines input and output parameters
o Allows running shell scripts or other actions, like a workflow
Action calls script updatesnap/updatesnapyaml . py for actual task:
o Finds latest release tag of source of each partin snapcraft.yaml
o Compares with tag used in snapcraft.yaml and updates
In case of a change, the action commits and pushes the change

https://github.com/ubuntu/desktop-snaps/

Your application everywhere, just in a Snap!

Edit your snapcraft.yaml

Edit your snapcraft.yaml

Required to make a part getting auto-updated:

Load source of stable releases from GitHub repo, not from tarball
Select version by release tag of upstream repository
Add source-depth: 1 to mark for auto-update (and loads more quickly)

parts:

app-1:
source: https: github.com/tillkamppeter/versioning—example—app—1

source-type: git
source-tag: '0.1.4"
source-depth: 1

https://github.com/tillkamppeter/versioning-example-app-1

Edit your snapcraft.yaml

Optional, to fine-tune the updating:

No update to a new generation, often incompatible changes (AP], ...)
Skip versions like 1.91, 2.99, ... these are usually betas
More control directives available, like format: "pixman-3%M.%m.%R"

parts:
app-1:
[...]
source-depth: 1
ext:updatesnap
version-format:
lower—-than: '2'
#

no-9x-revisions: true

Your application everywhere, just in a Snap!

Let's go!

Allow the workflow to push changes:

In the GitHub web interface select "Settings" tab

"Actions" -> "General" (Left side bar, under "Code and Automation")

Set "Actions permissions” to "Allow all actions and reusable workflows"
Set "WorkFflow permissions" to "Read and write permissions"

Test it:

"Release" a new VERSION of one or more of app-1, app-2, app-3

@)

O

@)

Edit the executable to display VERSION
git commit; git tag VERSION; git push; git push --tags
Make sure VERSION is newer than the current one

Within 24 hours your snapcraft.yaml should get auto-updated
This workshop is only 1 hour, so let us trigger manually:

O

O O O O

In the GitHub web interface of the Snap go to "Actions" tab

On the left, select "Push new tag update to the stable branch"
Click "Run workflow" button and choose the branch

You get a new entry in the list, click it and see the logs

Check the snapcraft.yaml in your repo

Your application everywhere, just in a Snap!

Auto-update right into the
Snap Store!

Auto-update right into the Snap Store!

Two methods of building your Snap on every GitHub commit:

1. Directly in the Snap Store
e Go tothe Snap Store publisher web interface: https://snapcraft.io/snaps

e Selectyour Snap
e Click "Builds" tab: https://snapcraft.io/YOUR-SNAP/builds
e Follow instructions

Advantage:

e No Launchpad interaction/account needed
Disadvantage:

e Only commits to master branch uploaded into Edge channel

https://snapcraft.io/snaps
https://snapcraft.io/YOUR-SNAP/builds

Auto-update right into the Snap Store!

2. Control via Launchpad

Go to https://launchpad.net/

Select "Register a project" (on the right)

Fillin the forms (2 pages)

On the project page go to "Code" tab

Click "Configure Code"

Select "GIT" at the top

Under "Link or import an existing repository" select "Import a Git
repository hosted somewhere else"

Enter your "https://github.com/..." repository URL

Now each commit is automatically mirrored to the Launchpad GIT

https://launchpad.net/
https://github.com/%E2%80%A6

Auto-update right into the Snap Store!

Under "Branches" you see your GitHub repo's branches

Select the one you are auto-updating with our workflow

Under "Related snap packages" click "Create snap package"

Fill the Field "Snap recipe name:"

Choose the desired architectures under "Processors:"

Mark "Automatically build when branch changes" to get a build on each
push

Optionally mark "Automatically upload to store" and choose destination
channel under "Store channels", drop-down "Risk".

Submit via "Create Snap package", no other settings needed.

Auto-update right into the Snap Store!

Advantages:

More configurability

One Snap build/upload recipe for each branch
Upload into desired Snap Store channel

Optionally just building, without upload

Auto-update right into the Snap Store!

At Ubuntu we do (ex.: https://github.com/ubuntu/gnome-calculator/)

e "stable" branch for releases
Default branch
o Update automation on upstream releases
o Auto-upload into "candidate" channel in Snap Store
o Promotion into "stable" after manual test
e "edge" branch for development
o Auto-upload into "edge" channel in Snap Store
o Merge changes into stable branch as needed

@)

https://github.com/ubuntu/gnome-calculator/

Your application everywhere, just in a Snap!

summary

Steps for full update automation

Add .github/workflows/auto-update.yml
o Copy from gnome-text-editor or similar
Edit snapcraft.yaml
o Source code needs to be downloaded from GIT
o source-tag: ..toselectreleasetag
o source-depth: 1 to markastobe auto-updated
o Additional parametersvia # ext:updatesnap

Allow the workflow to push changes to your GIT repository

Set Launchpad project GIT to auto-sync from your GitHub repo and set this
GIT to auto-build and -upload Snap

https://github.com/ubuntu/gnome-text-editor/blob/stable/.github/workflows/auto-update.yml

Your application everywhere, just in a Snap!

Get the perfFect snapper —
More info/Links

More info/links:

e Ubuntu blog by Heather Ellsworth and Sergio Costas Rodriguez about the
Snap updating automation described in this workshop:
o https://ubuntu.com/blog/improving-snap-maintenance-with-automation
e Real-live example Snaps using update automation:
o https://qgithub.com/ubuntu/gnome-text-editor
o https://github.com/ubuntu/gnome-calculator

https://ubuntu.com/blog/improving-snap-maintenance-with-automation
https://github.com/ubuntu/gnome-text-editor
https://github.com/ubuntu/gnome-calculator

More info/links:

e Getting started with snapping apps, with GNOME desktop apps as example, in
the workshop "Your app everywhere, just in a Snap" (links to slides and
exercises/examples)

o https://events.canonical.com/event/35/contributions/291/

e More Snap magic, not only for daemons, in the "Daemon Snapper's
workshop" (links to slides and exercises/examples)

o https://events.canonical.com/event/2/contributions/42/

e Workshop GNOME app Snap example from Olivier Tilloy, each commit in this
GIT repository is one step of the snapcraft.yaml development:

o https://git.launchpad.net/~osomon/+git/secrets-snap/log/?h=main
e Want to snap something cute? Qt/KDE apps? Jesus' talk from Akademy 2023:
o https://github.com/jssotomdz/qt-snaps

https://events.canonical.com/event/35/contributions/291/
https://events.canonical.com/event/2/contributions/42/
https://git.launchpad.net/~osomon/+git/secrets-snap/log/?h=main
https://github.com/jssotomdz/qt-snaps

More info/links:

e Ubuntu blogs from Oliver Smith about optimizing performance of Snaps:
o https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-1
o https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-2
o https://ubuntu.com/blog/improving-firefox-snap-performance-part-3
o https://ubuntu.com/blog/firefox-snap-updates-and-upgrades
e And to know why we all are snapping like hell (all-Snap Ubuntu Core Desktop):
o https://ubuntu.com/blog/ubuntu-core-an-immutable-linux-desktop
e Want to watch some snappy videos? Here we go:
o https://www.voutube.com/watch?v=TfB6QwWR2GYq
o https://www.voutube.com/watch?v=ido6kGmSHWI

https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-1
https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-2
https://ubuntu.com/blog/improving-firefox-snap-performance-part-3
https://ubuntu.com/blog/firefox-snap-updates-and-upgrades
https://ubuntu.com/blog/ubuntu-core-an-immutable-linux-desktop
https://www.youtube.com/watch?v=TfB6QwR2GYg
https://www.youtube.com/watch?v=ido6kGmSHWI

More info/links:

e And at OpenPrinting we are also snappy:

o https://snapcraft.io/publisher/openprinting
http://www.openprinting.org/
https://openprinting.github.io/about-us/
https://openprinting.github.io/news/
https://qithub.com/OpenPrinting

O O O O

https://snapcraft.io/publisher/openprinting
http://www.openprinting.org/
https://openprinting.github.io/about-us/
https://openprinting.github.io/news/
https://github.com/OpenPrinting

