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What the hell are Snaps? And 
why should I use them?

Your application everywhere, just in a Snap!



● You are developer of an application?
● Already thought about how it gets distributed to end users?

 ⇒ This could turn people away from Linux!

● You provide the source code
○ Only tech-savvy users can use it directly
○ You need goodwill of distro maintainers to package your app
○ Distro version released  No update of your app in this distro version  ⇒ ⇒

User always has to update to newest distro version
● You package your app, for 10+ distros and have to test on 10+ distros 
● That is a nightmare! Isn't it?

  

What the hell are Snaps?



● You have a smartphone? There it is much easier: Google Play Store, App 
Store

● And remember that Canonical developed a smartphone OS?
● They have learned from it!

 ⇒ And now we have …

Snap!
  

What the hell are Snaps?



● A method of OS-distribution-independent packaging
○ You package and test once, put your Snap into the Snap Store, and users of 

any distro (Ubuntu, Debian, SUSE, Red Hat, Windows, …) can use it.
○ All libraries and other dependencies come with your Snap
○ User experience as with smartphone apps

● Your app runs in a security shell (AppArmor, seccomp, namespaces), 
isolated from the host system
○ So-called sandboxed packaging
○ Communication to outside only via well-defined interfaces
○ Snap Store has control, has to explicitly permit "dangerous" interfaces
○ This way we can trust third-party apps
○ We are not dependent any more on distro maintainers for secure packages

  

What the hell are Snaps?



● Don't fear the daemons, we snap them, too!
○ Snap is universal, not only desktop apps but also daemons, system utilities, sub-

systems, drivers, operating system cores, kernels, … can get snapped
=>  All-Snap operating system, like Ubuntu Core Desktop

● Packaging moves from distros to upstream
○ 10+ distros, each packaging XXX, inventing the wheel 10+ times
○ So let upstream, XXX.org, snap it, distros take the Snap
○ Distro devs concentrate on distro core or contribute to upstream code
○ Distro version released, app updates continue from upstream

● Immutable distros, Immutable sub-systems, Immutable apps
○ Ubuntu Core: Immutable core, all-Snap distro, desktop under development
○ Snaps are immutable apps (or immutable sub-systems, like the CUPS Snap)
○ Not that immutable, many system components, like printing stack or GPU 

drivers in separate Snaps

  

What the hell are Snaps?



Snap Packages
Your application everywhere, just in a Snap!



● Compressed and GPG-signed read-only squashfs images

● Includes metadata in a *.yaml file

● Installed Snap has a writable file system area inside its confinement

● Come in 4 types (app, os, gadget, kernel)

● Support transactional (atomic) updates and rollback

● Can handle binary diffs for smaller download on upgrades

● Available on multiple distros and supported by default on all Ubuntu installs 
since Ubuntu 14.04

  

Snap Package Properties



● Read-only file system image (squashfs)

● GPG signed

● Confinement via:

– AppArmor (File system access rules)

– seccomp (System call restrictions)

– Namespaces (Separate resource spaces: PIDs, users, network, ...)

● snapd and snap-confine wrap around all executables in a snap, to ensure only the 
allowed writable dirs can be accessed

● Details: https://developer.ubuntu.com/en/snappy/guides/security-whitepaper/ 

  

Snap Package Security

https://developer.ubuntu.com/en/snappy/guides/security-whitepaper/


● “root-safe”

– Applications can run as root but can not break out of the package 
confinement, no need for specific user or group setup to maintain 
security.

– Example: Daemon Snaps

● Interfaces

– Slots: Can provide access to features inside the Snap for other Snap 
packages (most slots come from core Snap)

– Plugs: Can make use of features provided by slots

● Rollback on error

– Transactional updates allow manual or automatic roll-back

  

Snap Package Security



● Snapped applications are completely encapsulated (AppArmor, seccomp, 
namespaces)

● By default, they cannot communicate with the host system or with other Snaps
● Communication is possible via well-defined interfaces: "network", "cups", 

"dbus", …
● A "plug" has to be connected with a "slot" of the system or of another Snap in 

order to communicate
○ “Safe” interfaces

■ Ex.: “cups” which allows listing available printers and printing 
■ are auto-connected when installing from Snap Store

○ “Dangerous” interfaces
■ Ex.: “cups-control” which allows creating/removing printers, delete all jobs …
■ need manual connection or permission from Snap Store team for auto-

connection

Interfaces: Safe vs. Dangerous 



● Transactional (atomic) updates

● Current version and its writable area saved, for rollback

● Automatic rollback and reboot after kernel panic or boot failure

Updating Snaps 



Ubuntu Core – all-Snap OS
Your application everywhere, just in a Snap!



● Originally created for IoT ...

● The all-Snap Ubuntu Core OS consists of

– Gadget Snap
● Bootloader, partitioning, hardware

specifics …

– Kernel Snap

– Core Snap
● Minimum base operating system
● core, core18, core20, core22, … based on Ubuntu LTS

● Comes in one image but Snaps separately updateable

   

Ubuntu Core Operating System



● Every Snap can be
independently updated
(and rolled back)

  

No interdependencies between Snaps



● On classic systems: Unified execution environment for all application Snaps

● On all-Snap systems: Core Snap is actually the rootfs

● Just enough OS to run the Snap management daemon (snapd), systemd and a 
minimal set of system services

● Provides the system level Snap interfaces (access to hardware, networking, 
control of the OS, modules, devices)

● Comes with a built in configuration interface to control certain aspects of the 
system via the snap set/get commands (en/disable services, set hostname, 
timeserver etc)

  

The Core Snap



● Minimally patched (the extra AppArmor bits can be found for various kernels 
at: http://kernel.ubuntu.com/git/jj/linux-apparmor-backports/)

● Ships with a generic initrd to set up writable area for the read-only core snap

● Easily buildable via snapcraft plugin, only needs a snapcraft.yaml in the 
tree

● Can be any BSP kernel (minimal reqs. 3.10 and the above mentioned AppArmor 
patch set)

● Can be rolled back at any time either manually or automatically on panic

● Requires certain set of default config options (a list can be found here:
http://people.canonical.com/~ppisati/snappy_config/)

  

The Kernel Snap

http://kernel.ubuntu.com/git/jj/linux-apparmor-backports/
http://people.canonical.com/~ppisati/snappy_config/


● Defines the partitioning of the image and what bits get installed via the 
gadget.yaml file

● Ships the bootloader and bootloader config

● Can define board-specific interfaces and pre-connect them

● Can define additional default snaps

Example: A Kodi appliance image would define to install the Kodi Snap at image build 
time and auto-connect the slots and plugs for OpenGLES access, audio and 
removable media.

  

The Gadget Snap



Ubuntu Core Desktop
Your application everywhere, just in a Snap!



● Easy to maintain for end users, like a
smartphone

● Boot Base = Core Snap

● Additional Bases: Extra Core Snaps
needed for Apps using other
coreXX base Snap

● Ubuntu Desktop Session Snap:
Wayland, Desktop environment
(GNOME)

● All building blocks independently
updateable and exchangeable

  

Ubuntu Core Desktop – Building Blocks



● Principally as Ubuntu Core, but comes with

– Desktop Session Snap

– Common Applications

● A Model defines how the image gets composed: Specialized Kernel (games, 
broadcasting), desktop environment (GNOME, KDE, …), Applications

● Everything easily exchangeable: Other desktop, gaming kernel, …

● With modularity difficult to break ...

  

Ubuntu Core Desktop



● Wayland user session

● GNOME running under usual Snap confinement

● All of the expected desktop services in a confined Snap

  

Desktop Session Snap



The Making of ...
Your application everywhere, just in a Snap!



● snapcraft creates Snaps, orchestrating disparate components and building 
systems into one cohesive distributable package

● It can re-use DEB packages from Ubuntu (of the Ubuntu LTS release the Core 
Snap used is based on).

● It’s extensible and new plugins to leverage different technologies are being 
developed all the time. A few examples of its plugins are Java, Python, Catkin 
(ROS), Go, CMake, qmake, make, autotools, etc.

  

snapcraft – Let’s go snapping ...



● Single snapcraft.yaml file that describes everything

● Defines apps, build process, build dependencies, runtime dependencies, 
interfaces

● Fully supported and integrated in Launchpad

● GitHub build service provided via https://build.snapcraft.io/ 

● Detailed documentation and tutorials at https://snapcraft.io/ 

● Or come to our snapping workshop after the break!

  

snapcraft – Let’s go snapping ...

https://build.snapcraft.io/
https://snapcraft.io/


● The magic tool putting everything together

● Using a signed “assertion” file to define which Snaps end up inside the image

● Reads gadget.yaml to create partitioning

● Can build full disk images (i.e. SD card) or multi-partition images (i.e. to dd single 
img files to specific eMMC partitions on a pre-partitioned flash device)

● Available as a Snap! (snap install ubuntu-image …)

● Detailed documentation at: 
https://docs.ubuntu.com/core/en/guides/build-device/image-building 

  

ubuntu-image – Assemble your all-Snap OS!

https://docs.ubuntu.com/core/en/guides/build-device/image-building


Want to know more?
Your application everywhere, just in a Snap!



● Snap Store and home page of Snap:

– https://snapcraft.io

● Discuss your questions in the forums:

– https://forum.snapcraft.io/ 

● Documentation:

– https://snapcraft.io/docs 

More info/links:

https://snapcraft.io/
https://forum.snapcraft.io/
https://snapcraft.io/docs


● Learn about immutable OS distributions:
○ https://ubuntu.com/blog/ubuntu-core-an-immutable-linux-desktop

●  Ubuntu Core Desktop – Introduction

○ https://discourse.ubuntu.com/t/ubuntu-core-desktop-deep-dive/

● Ubuntu Core Desktop – GitHub

○ https://github.com/canonical/ubuntu-core-desktop/ 

● Ubuntu Core Desktop – Installation HOWTO

○ https://www.omgubuntu.co.uk/2023/06/try-ubuntu-snap-desktop 

More info/links:

https://ubuntu.com/blog/ubuntu-core-an-immutable-linux-desktop
https://discourse.ubuntu.com/t/ubuntu-core-desktop-deep-dive/
https://github.com/canonical/ubuntu-core-desktop/
https://www.omgubuntu.co.uk/2023/06/try-ubuntu-snap-desktop


● Ubuntu blogs from Oliver Smith about optimizing performance of Snaps:
○ https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-1 
○ https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-2 
○ https://ubuntu.com/blog/improving-firefox-snap-performance-part-3 
○ https://ubuntu.com/blog/firefox-snap-updates-and-upgrades 

● Want to watch some snappy videos? Here we go:
○ https://www.youtube.com/watch?v=TfB6QwR2GYg 
○ https://www.youtube.com/watch?v=ido6kGmSHWI 

More info/links:

https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-1
https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-2
https://ubuntu.com/blog/improving-firefox-snap-performance-part-3
https://ubuntu.com/blog/firefox-snap-updates-and-upgrades
https://www.youtube.com/watch?v=TfB6QwR2GYg
https://www.youtube.com/watch?v=ido6kGmSHWI
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