
Desktop Linux
as easy as a smartphone –
Just in a Snap!

An introduction into the universal packaging format

Till Kamppeter <till.kamppeter@gmail.com>

Opportunity Open Source - September 2023

mailto:till.kamppeter@gmail.com

What the hell are Snaps? And
why should I use them?

Your application everywhere, just in a Snap!

● You are developer of an application?
● Already thought about how it gets distributed to end users?

 ⇒ This could turn people away from Linux!

● You provide the source code
○ Only tech-savvy users can use it directly
○ You need goodwill of distro maintainers to package your app
○ Distro version released No update of your app in this distro version ⇒ ⇒

User always has to update to newest distro version
● You package your app, for 10+ distros and have to test on 10+ distros
● That is a nightmare! Isn't it?

What the hell are Snaps?

● You have a smartphone? There it is much easier: Google Play Store, App
Store

● And remember that Canonical developed a smartphone OS?
● They have learned from it!

 ⇒ And now we have …

Snap!

What the hell are Snaps?

● A method of OS-distribution-independent packaging
○ You package and test once, put your Snap into the Snap Store, and users of

any distro (Ubuntu, Debian, SUSE, Red Hat, Windows, …) can use it.
○ All libraries and other dependencies come with your Snap
○ User experience as with smartphone apps

● Your app runs in a security shell (AppArmor, seccomp, namespaces),
isolated from the host system
○ So-called sandboxed packaging
○ Communication to outside only via well-defined interfaces
○ Snap Store has control, has to explicitly permit "dangerous" interfaces
○ This way we can trust third-party apps
○ We are not dependent any more on distro maintainers for secure packages

What the hell are Snaps?

● Don't fear the daemons, we snap them, too!
○ Snap is universal, not only desktop apps but also daemons, system utilities, sub-

systems, drivers, operating system cores, kernels, … can get snapped
=> All-Snap operating system, like Ubuntu Core Desktop

● Packaging moves from distros to upstream
○ 10+ distros, each packaging XXX, inventing the wheel 10+ times
○ So let upstream, XXX.org, snap it, distros take the Snap
○ Distro devs concentrate on distro core or contribute to upstream code
○ Distro version released, app updates continue from upstream

● Immutable distros, Immutable sub-systems, Immutable apps
○ Ubuntu Core: Immutable core, all-Snap distro, desktop under development
○ Snaps are immutable apps (or immutable sub-systems, like the CUPS Snap)
○ Not that immutable, many system components, like printing stack or GPU

drivers in separate Snaps

What the hell are Snaps?

Snap Packages
Your application everywhere, just in a Snap!

● Compressed and GPG-signed read-only squashfs images

● Includes metadata in a *.yaml file

● Installed Snap has a writable file system area inside its confinement

● Come in 4 types (app, os, gadget, kernel)

● Support transactional (atomic) updates and rollback

● Can handle binary diffs for smaller download on upgrades

● Available on multiple distros and supported by default on all Ubuntu installs
since Ubuntu 14.04

Snap Package Properties

● Read-only file system image (squashfs)

● GPG signed

● Confinement via:

– AppArmor (File system access rules)

– seccomp (System call restrictions)

– Namespaces (Separate resource spaces: PIDs, users, network, ...)

● snapd and snap-confine wrap around all executables in a snap, to ensure only the
allowed writable dirs can be accessed

● Details: https://developer.ubuntu.com/en/snappy/guides/security-whitepaper/

Snap Package Security

https://developer.ubuntu.com/en/snappy/guides/security-whitepaper/

● “root-safe”

– Applications can run as root but can not break out of the package
confinement, no need for specific user or group setup to maintain
security.

– Example: Daemon Snaps

● Interfaces

– Slots: Can provide access to features inside the Snap for other Snap
packages (most slots come from core Snap)

– Plugs: Can make use of features provided by slots

● Rollback on error

– Transactional updates allow manual or automatic roll-back

Snap Package Security

● Snapped applications are completely encapsulated (AppArmor, seccomp,
namespaces)

● By default, they cannot communicate with the host system or with other Snaps
● Communication is possible via well-defined interfaces: "network", "cups",

"dbus", …
● A "plug" has to be connected with a "slot" of the system or of another Snap in

order to communicate
○ “Safe” interfaces

■ Ex.: “cups” which allows listing available printers and printing
■ are auto-connected when installing from Snap Store

○ “Dangerous” interfaces
■ Ex.: “cups-control” which allows creating/removing printers, delete all jobs …
■ need manual connection or permission from Snap Store team for auto-

connection

Interfaces: Safe vs. Dangerous

● Transactional (atomic) updates

● Current version and its writable area saved, for rollback

● Automatic rollback and reboot after kernel panic or boot failure

Updating Snaps

Ubuntu Core – all-Snap OS
Your application everywhere, just in a Snap!

● Originally created for IoT ...

● The all-Snap Ubuntu Core OS consists of

– Gadget Snap
● Bootloader, partitioning, hardware

specifics …

– Kernel Snap

– Core Snap
● Minimum base operating system
● core, core18, core20, core22, … based on Ubuntu LTS

● Comes in one image but Snaps separately updateable

Ubuntu Core Operating System

● Every Snap can be
independently updated
(and rolled back)

No interdependencies between Snaps

● On classic systems: Unified execution environment for all application Snaps

● On all-Snap systems: Core Snap is actually the rootfs

● Just enough OS to run the Snap management daemon (snapd), systemd and a
minimal set of system services

● Provides the system level Snap interfaces (access to hardware, networking,
control of the OS, modules, devices)

● Comes with a built in configuration interface to control certain aspects of the
system via the snap set/get commands (en/disable services, set hostname,
timeserver etc)

The Core Snap

● Minimally patched (the extra AppArmor bits can be found for various kernels
at: http://kernel.ubuntu.com/git/jj/linux-apparmor-backports/)

● Ships with a generic initrd to set up writable area for the read-only core snap

● Easily buildable via snapcraft plugin, only needs a snapcraft.yaml in the
tree

● Can be any BSP kernel (minimal reqs. 3.10 and the above mentioned AppArmor
patch set)

● Can be rolled back at any time either manually or automatically on panic

● Requires certain set of default config options (a list can be found here:
http://people.canonical.com/~ppisati/snappy_config/)

The Kernel Snap

http://kernel.ubuntu.com/git/jj/linux-apparmor-backports/
http://people.canonical.com/~ppisati/snappy_config/

● Defines the partitioning of the image and what bits get installed via the
gadget.yaml file

● Ships the bootloader and bootloader config

● Can define board-specific interfaces and pre-connect them

● Can define additional default snaps

Example: A Kodi appliance image would define to install the Kodi Snap at image build
time and auto-connect the slots and plugs for OpenGLES access, audio and
removable media.

The Gadget Snap

Ubuntu Core Desktop
Your application everywhere, just in a Snap!

● Easy to maintain for end users, like a
smartphone

● Boot Base = Core Snap

● Additional Bases: Extra Core Snaps
needed for Apps using other
coreXX base Snap

● Ubuntu Desktop Session Snap:
Wayland, Desktop environment
(GNOME)

● All building blocks independently
updateable and exchangeable

Ubuntu Core Desktop – Building Blocks

● Principally as Ubuntu Core, but comes with

– Desktop Session Snap

– Common Applications

● A Model defines how the image gets composed: Specialized Kernel (games,
broadcasting), desktop environment (GNOME, KDE, …), Applications

● Everything easily exchangeable: Other desktop, gaming kernel, …

● With modularity difficult to break ...

Ubuntu Core Desktop

● Wayland user session

● GNOME running under usual Snap confinement

● All of the expected desktop services in a confined Snap

Desktop Session Snap

The Making of ...
Your application everywhere, just in a Snap!

● snapcraft creates Snaps, orchestrating disparate components and building
systems into one cohesive distributable package

● It can re-use DEB packages from Ubuntu (of the Ubuntu LTS release the Core
Snap used is based on).

● It’s extensible and new plugins to leverage different technologies are being
developed all the time. A few examples of its plugins are Java, Python, Catkin
(ROS), Go, CMake, qmake, make, autotools, etc.

snapcraft – Let’s go snapping ...

● Single snapcraft.yaml file that describes everything

● Defines apps, build process, build dependencies, runtime dependencies,
interfaces

● Fully supported and integrated in Launchpad

● GitHub build service provided via https://build.snapcraft.io/

● Detailed documentation and tutorials at https://snapcraft.io/

● Or come to our snapping workshop after the break!

snapcraft – Let’s go snapping ...

https://build.snapcraft.io/
https://snapcraft.io/

● The magic tool putting everything together

● Using a signed “assertion” file to define which Snaps end up inside the image

● Reads gadget.yaml to create partitioning

● Can build full disk images (i.e. SD card) or multi-partition images (i.e. to dd single
img files to specific eMMC partitions on a pre-partitioned flash device)

● Available as a Snap! (snap install ubuntu-image …)

● Detailed documentation at:
https://docs.ubuntu.com/core/en/guides/build-device/image-building

ubuntu-image – Assemble your all-Snap OS!

https://docs.ubuntu.com/core/en/guides/build-device/image-building

Want to know more?
Your application everywhere, just in a Snap!

● Snap Store and home page of Snap:

– https://snapcraft.io

● Discuss your questions in the forums:

– https://forum.snapcraft.io/

● Documentation:

– https://snapcraft.io/docs

More info/links:

https://snapcraft.io/
https://forum.snapcraft.io/
https://snapcraft.io/docs

● Learn about immutable OS distributions:
○ https://ubuntu.com/blog/ubuntu-core-an-immutable-linux-desktop

● Ubuntu Core Desktop – Introduction

○ https://discourse.ubuntu.com/t/ubuntu-core-desktop-deep-dive/

● Ubuntu Core Desktop – GitHub

○ https://github.com/canonical/ubuntu-core-desktop/

● Ubuntu Core Desktop – Installation HOWTO

○ https://www.omgubuntu.co.uk/2023/06/try-ubuntu-snap-desktop

More info/links:

https://ubuntu.com/blog/ubuntu-core-an-immutable-linux-desktop
https://discourse.ubuntu.com/t/ubuntu-core-desktop-deep-dive/
https://github.com/canonical/ubuntu-core-desktop/
https://www.omgubuntu.co.uk/2023/06/try-ubuntu-snap-desktop

● Ubuntu blogs from Oliver Smith about optimizing performance of Snaps:
○ https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-1
○ https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-2
○ https://ubuntu.com/blog/improving-firefox-snap-performance-part-3
○ https://ubuntu.com/blog/firefox-snap-updates-and-upgrades

● Want to watch some snappy videos? Here we go:
○ https://www.youtube.com/watch?v=TfB6QwR2GYg
○ https://www.youtube.com/watch?v=ido6kGmSHWI

More info/links:

https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-1
https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-2
https://ubuntu.com/blog/improving-firefox-snap-performance-part-3
https://ubuntu.com/blog/firefox-snap-updates-and-upgrades
https://www.youtube.com/watch?v=TfB6QwR2GYg
https://www.youtube.com/watch?v=ido6kGmSHWI

	Slide 1
	Slide 2
	What the hell are Snaps?
	What the hell are Snaps?
	What the hell are Snaps?
	What the hell are Snaps?_clipboard0
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Interfaces: Safe vs. Dangerous
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

