31 August 2024 to 2 September 2024
JECRC Foundation
Asia/Kolkata timezone

ML workloads on Kubernetes with Kubeflow: Why and How?

1 Sept 2024, 13:25
30m
Main hall (JECRC Foundation)

Main hall

JECRC Foundation

Shri Ram ki Nangal, via Sitapura RIICO Tonk Road, Jaipur, Rajasthan 302 022 India
Talk Data, AI and ML

Speaker

Shivay Lamba
Couchbase

Description

One of the main challenges for Kubernetes adoption in businesses is the lack of in-house skills to make the most out of a Kubernetes-based stack which is especially true for organizations implementing Machine Learning workloads developed by ML Engineers or Data Scientists whose skill set usually does not include infrastructure tooling from the cloud native ecosystem.

In this talk, you'll learn about key Kubernetes constructs, why and how to use them effectively to meet core requirements for ML workloads as we introduce Kubeflow which is an open-source project allowing users to leverage the power of Kubernetes to run the training and serving of their ML models. We will focus on Charmed Kubeflow which is a Canonical distribution of Kubeflow to show how you can leverage the power of Kubeflow to deploy and serve large machine-learning models with ease.

What audience can learn

  1. Learn how to properly deploy LLMs and modern ML pipelines with ease on Kubernetes.

  2. This is a great session for MLOps, DevOps engineers to understand tooling that can be leveraged for efficient ML provisioning with a focus on scale and efficient and cost friendly deployments of ML pipelines

Biography

I'm Shivay Lamba, a software engineer specializing in Web Development, Machine Learning, and DevOps. I am also a Developer Relations Consultant helping various startups improve their developer experience. I am also an open-source contributor, maintainer, and mentor.

Things to know or prepare for this session

Basics of Machine learning, and Kubernetes

Summary

In this talk, we introduce Kubeflow an open-source project allowing users to leverage the power of Kubernetes to run the training and serving of their ML models. We will focus on Charmed Kubeflow which is a Canonical distribution of Kubeflow to show how you can leverage the power of Kubeflow

Difficulty level Intermediate

Presentation materials

There are no materials yet.