
Your app everywhere –
Just in a Snap!

An interactive workshop

Till Kamppeter <till.kamppeter@gmail.com>

UbuCon Asia 2024, Jaipur, India

mailto:till.kamppeter@gmail.com

Introduction

This workshop is based on
"Snapping like Hell(sworth)"
from the Ubuntu Summit 2022

Thanks, Heather Ellsworth and Lucy Llewellyn, for your great work!

Heather Ellsworth

Lucy Llewelyn

Please download these slides!
You find them on the Opportunity Open Source web site, find this workshop on the
timetable, open its description page and go to "Presentation Materials" (bottom).
https://events.canonical.com/event/47/contributions/397/
This way you can browse the slides in your own pace while setting up and doing the
exercises.
And you can copy and paste command lines and example code.
You can click the numerous links.
You can also read the advanced topics which will not get necessarily presented
here.
May the source (and these slides) always be with you!

Introduction

https://events.canonical.com/event/47/contributions/397/

What you will learn
What the hell are Snaps?
Why package as Snap?
How to package GNOME applications as Snaps (snapping applications)
Building your application from source or packaging binaries
Finding dependencies
Using an auxiliary Snap with all GNOME libraries, to save storage
What you need to know
Basic installing from source and from classic packages (DEB, RPM, …)
Little code tweaks
Shell scripting

Introduction

Why do I organize and host Snap workshops on conferences?
On the conferences there are many free software app developers and also
potential snappers in the community.

Upstream should snap: Free software projects snap their apps by themselves.
They know the ins and outs and the quirks of their own apps
They can most easily adapt their apps for snapping
The one a user could trust most is the creator of the app

If upstream does not do it we need volunteers in the community for app
snapping projects, like snapcrafters

Well-known projects like snapcrafters have a high degree of trustworthiness,
too.

Introduction

Setup

Your application everywhere, just in a Snap!

This is a workshop, interactive, so you will try everything on your laptop!
You need Ubuntu 22.04 or later, snapd, snapcraft, and LXD installed, basic
development/compiling utilities, activate Debian sources:
 $ update-manager (Settings -> Ubuntu Software -> Source code)
 $ sudo apt install build-essential git
 $ sudo apt build-dep gnome-text-editor (Gets all GNOME libraries and headers)
 $ sudo snap install lxd
 $ sudo lxd init (Simply press <Enter> on each question)
 $ sudo adduser `whoami` lxd
 $ sudo ln -s /var/lib/snapd/snap /snap
 $ sudo snap install --classic snapcraft
 $ reboot

Setup

– – OR – – use our virtual machine image, on any system!
We give you the file workshop-ubuntu-23.04.qcow2 (5.7 GB) on a USB stick,
please make a copy of it, so you can get back to the original state
Or download (well!) before the workshop starts (let link open in browser):

https://drive.google.com/file/d/1kkxZ8GE3_UtG7orl5v2d4x_T4FhMUcbb/view?usp=sharing

Works with any software which supports *.qcow2 images.
Use 4 GB RAM, 2 CPUs, and 25 GB storage if possible. 2 GB RAM and 1 CPU
should also work.
Check BIOS settings if hardware virtualization support is enabled.
For example use Virtual Machine Manager, GNOME Boxes, or qemu-system-
x86_64

Setup

https://drive.google.com/file/d/1kkxZ8GE3_UtG7orl5v2d4x_T4FhMUcbb/view?usp=sharing

Virtual Machine Manager
$ sudo apt install virt-manager
Choose connection "QEMU/KVM" and NOT "QEMU/KVM User session" so that
you can transfer files via "scp" command
Click button for creating a new virtual machine
Choose "Import existing disk image"
Operating system is Ubuntu 23.04
Choose 4 GB RAM, 2 CPUs, 25 GB storage
Get the VM's IP address via "ip addr" command
Transfer files via "scp" command on the host, user "ubuntu", password
"ubuntu"

Setup

qemu-system-x86_64
Command line:
$ qemu-system-x86_64 -smp 2 -m 4096 -machine accel=kvm \
 -display gtk,gl=on -net nic,model=virtio \
 -net user,hostfwd=tcp::8022-:22 -drive \
 file=IMAGE.qcow2,cache=none,format=qcow2,id=main,if=none \
 -device virtio-blk-pci,drive=main,bootindex=1 \
 -audiodev pa,id=ac97
Transfer files, on host do (password: ubuntu):
$ scp -p 8022 FILE ubuntu@localhost:.
$ scp -p 8022 -r DIR ubuntu@localhost:.

Setup

Your Virtual Machine
It is Ubuntu Desktop 23.04
User: ubuntu
Password: ubuntu
Preceed command with sudo to run it as root, password ubuntu
Transfer files from your host with scp

Get the IP address via "ip addr" command
Or change host name ("ubuntu") via GNOME Control Center, section "About"

All the needed tools are already installed
Editors installed: gnome-text-editor, vim, emacs, nano
Install any additional package you need
Mentioned GIT repositories in examples/, do exercises in exercises/

Setup

Update your Virtual Machine
Get a snapcraft which supports core24:
sudo snap refresh snapcraft
Get the updated core24-based examples.
Go into each of the example GIT repositories and do
git pull
Options: General system update
sudo apt update
sudo apt dist-upgrade
sudo apt autoremove

Setup

What the hell are Snaps? And
why should I use them?

Your application everywhere, just in a Snap!

You are developer of an application?
Already thought about how it gets distributed to end users?
⇒ This could turn people away from Linux!
You provide the source code

Only tech-savvy users can use it directly
You need goodwill of distro maintainers to package your app
Distro version released ⇒ No update of your app in this distro version ⇒ User
always has to update to newest distro version

You package your app, for 10+ distros and have to test on 10+ distros
That is a nightmare! Isn't it?

What the hell are Snaps?

You have a smartphone? There it is much easier: Google Play Store, App
Store
And remember that Canonical developed a smartphone OS?
They have learned from it!
⇒ And now we have …

Snap!

What the hell are Snaps?

A method of OS-distribution-independent packaging
You package and test once, put your Snap into the Snap Store, and users of
any distro (Ubuntu, Debian, SUSE, Red Hat, Windows, …) can use it.
All libraries and other dependencies come with your Snap
User experience as with smartphone apps

Your app runs in a security shell (AppArmor, seccomp, namespaces), isolated
from the host system

So-called sandboxed packaging
Communication to outside only via well-defined interfaces
Snap Store has control, has to explicitly permit "dangerous" interfaces
This way we can trust third-party apps
We are not dependent any more on distro maintainers for secure packages

What the hell are Snaps?

Don't fear the daemons, we snap them, too!
Snap is universal, not only desktop apps but also daemons, system utilities, sub-
systems, drivers, operating system cores, kernels, … can get snapped

Packaging moves from distros to upstream
10+ distros, each packaging XXX, inventing the wheel 10+ times
So let upstream, XXX.org, snap it, distros take the Snap
Distro devs concentrate on distro core or contribute to upstream code
Distro version released, app updates continue from upstream

Immutable distros, Immutable sub-systems, Immutable apps
Ubuntu Core/Ubuntu Core Desktop: Immutable, all-Snap distro
Snaps are immutable apps (or immutable sub-systems, like the CUPS Snap)
Not that immutable, many system components, like printing stack or GPU
drivers in separate Snaps

What the hell are Snaps?

Example #1:

Hello World!

Your application everywhere, just in a Snap!

What to expect
Use GNOME’s Gtk Hello World example as an example C program with GUI
Step-by-step process creating snapcraft.yaml
Iterative build

Key concepts
Basic metadata, apps, parts
How to include build dependencies (build-packages:)
How to include runtime dependencies (stage-packages:)
"dump" plugin
Local source (source in same repository as snapping)
"Manual" building (override-build:)
build and test

Example #1: Hello World! – What are we doing?

How to make the hello world: https://www.gtk.org/docs/getting-started/hello-world
If you are not using our virtual machine, grab the source code from the site and put it into
~/exercises/hello-world-gtk/src/hello-world-gtk.c
Build and run the app:
 $ cd ~/exercises/hello-world-gtk/src
 $ gcc $(pkg-config --cflags gtk4) -o hello-world-gtk \
 hello-world-gtk.c $(pkg-config --libs gtk4)
 $./hello-world-gtk
Now you know what we will snap …

Example #1: Hello World! – Make the app!

https://www.gtk.org/docs/getting-started/hello-world

We have the source and know how to make the binary
Remove the binary, we do not need it in the Snap, it can actually break the Snap:
 $ rm hello-world-gtk
Using your favorite editor, create ~/exercises/hello-world-gtk/
snapcraft.yaml
This is the instruction file for the Snap build
Ok what do we need?

metadata: Name, version, summary, description, base, confinement
apps: List of apps that will be built
parts: The stuff that builds the apps

(Quick grab: https://github.com/tillkamppeter/hello-world-gtk)

Example #1: Hello World! – Let's snap it!

https://github.com/tillkamppeter/hello-world-gtk

Enter these lines into your snapcraft.yaml file:

 name: hello-world-gtk
 version: '0.1'
 summary: Gtk Hello World example
 description: A simple Gtk example
 base: core24
 confinement: strict

Recommended metadata: https://snapcraft.io/docs/adding-global-metadata
Complete list of metadata keys/values: https://snapcraft.io/docs/snapcraft-top-level-
metadata

(Quick grab: https://github.com/tillkamppeter/hello-world-gtk)

Example #1: Hello World! – Metadata

https://snapcraft.io/docs/adding-global-metadata
https://snapcraft.io/docs/snapcraft-top-level-metadata
https://snapcraft.io/docs/snapcraft-top-level-metadata
https://github.com/tillkamppeter/hello-world-gtk

Add these lines to your snapcraft.yaml file:

 apps:
 hello-world-gtk:
 command: src/hello-world-gtk
 plugs:
 - x11
 - wayland

(Quick grab: https://github.com/tillkamppeter/hello-world-gtk)

Example #1: Hello World! – Apps

https://github.com/tillkamppeter/hello-world-gtk

Add these lines to your snapcraft.yaml file:
 parts:
 hello-world-gtk:
 plugin: dump
 source: .
 override-build: |
 set -eux
 cd src
 gcc $(pkg-config --cflags gtk4) -o hello-world-gtk \
 hello-world-gtk.c $(pkg-config --libs gtk4)
 cd ..
 craftctl default
 build-packages:
 - pkgconf
 - libgtk-4-dev

 stage-packages:
 - libgtk-4-1

For a complete list of parts keys/values: https://snapcraft.io/docs/adding-parts
(Quick grab: https://github.com/tillkamppeter/hello-world-gtk)

Example #1: Hello World! – Parts

https://snapcraft.io/docs/adding-parts
https://github.com/tillkamppeter/hello-world-gtk

Build command: “snapcraft” with options
--verbostiy = verbosity level of the build
--debug = in case of failure, drop us into the build environment

Output of build process:

 $ snapcraft --verbosity debug --debug

 Starting Snapcraft 8.3.2
 Logging execution to
 '/home/ubuntu/.local/state/snapcraft/log/snapcraft-20230729-145410.515361.log'
 Running on amd64 for amd64
 Launching instance…
 [...]
 Creating snap package…
 Packed hello-world-gtk_0.1_amd64.snap
 $

(Quick grab: https://github.com/tillkamppeter/hello-world-gtk)

Example #1: Hello World! – Build it!

https://github.com/tillkamppeter/hello-world-gtk

Command: “snap install” with options
--dangerous = If not installed from store, circumvent store signature

 $ sudo snap install hello-world-gtk_0.1_amd64.snap --dangerous
 hello-world-gtk 0.1 installed

 $ snap run hello-world-gtk
 (hello-world-gtk:109667): Gtk-WARNING **: 14:50:30.500: Locale not supported by C library.
 Using the fallback 'C' locale.
 Gsk-Message: 14:50:30.710: Failed to realize renderer of type 'GskGLRenderer' for surface
 'GdkX11Toplevel': libEGL not available
 (hello-world-gtk:109667): Gtk-CRITICAL **: 14:50:30.759: Unable to connect to the
accessibility bus
 at 'unix:path=/run/user/1000/at-spi/bus_1,guid=65774ea9c81c70feb5c5007163669b8e': Could not
 connect: Permission denied
 Gdk-Message: 14:50:30.760: Failed to get file transfer portal: Could not connect:
Permission denied

Example #1: Hello World! - Install and run it!

You probably have seen that we have compiled the source before snapping
and, instead of including that binary, let the Snap build process compile it
again.
This is very important for sandboxed packaging.
Our virtual machine is Ubuntu 23.04, so our manually compiled executable is
based on the libraries of this distribution
The executables encapsulated in the Snaps get their libraries from a base
distro, in our case Ubuntu 24.04 (base: core24 in snapcraft.yaml), also the
`stage-packages:` are from this distro version.
The binary built under Ubuntu 23.04 does not necessarily work under 24.04,
making the Snap fail.

Example #1: Hello World! – Important Remark

Example #2:

tldr python client

Your application everywhere, just in a Snap!

Example for an actual CLI application
This example snap uses python as the plugin for the main part, because, the
project is based on python, and they also use the python build system
In this example, you’ll learn how an app is snapped, when it needs to have
internet connection

Example #2: Tldr Python Client - A CLI app!

Metadata in ~/tldr-python-client/snap/snapcraft.yaml
(https://github.com/tldr-pages/tldr-python-client):

name: tldr
base: core24
version: '3.3.0'
summary: tldr python client
description: Python command-line client for tldr pages.

grade: stable
confinement: strict

platforms:
 amd64:
 arm64:
 armhf:
 ppc64el:
 s390x:

Example #2: Tldr Python Client - A CLI app!

https://github.com/tldr-pages/tldr-python-client

Apps entry in ~/tldr-python-client/snap/snapcraft.yaml
(https://github.com/tldr-pages/tldr-python-client):

apps:
 tldr:
 command: bin/tldr
 environment:
 PYTHONPATH: $SNAP/lib/python3.12/site-packages:$PYTHONPATH
 plugs:
 - network
 - home

Example #2: Tldr Python Client - A CLI app!

https://github.com/tldr-pages/tldr-python-client

Build the app from source
The way for "official" Snaps (especially if you are upstream).
No (binary) Debian packages of the app involved.
Get official upstream source, ideally directly from its GIT repository using
release tags

When hosting the snap manifest on GitHub, we can auto-update the Snap on
new upstream versions using the Snapcrafters CI: https://github.com/
snapcrafters/.github/wiki/Adding-our-automation-to-a-snap

Snapcraft plugins support common build systems:
autotools, meson, make, cmake, flutter, rust, go, …
To know about all the plugins: https://snapcraft.io/docs/supported-plugins
You only specify build configuration parameters, all commands are called
automatically.
 meson-parameters:
 - --prefix=/usr
 - --buildtype=release

Example #2: Tldr Python Client – Build the
app!

https://github.com/snapcrafters/.github/wiki/Adding-our-automation-to-a-snap
https://github.com/snapcrafters/.github/wiki/Adding-our-automation-to-a-snap
https://snapcraft.io/docs/supported-plugins

Example #3:

yt-dlp in a snap!

Your application everywhere, just in a Snap!

Example for a CLI application with a content snap
This example snap uses python as the plugin for the main part, because, the
project is based on python, and they also use the python build system
In this example, you’ll learn how an app is snapped, when it needs to have
internet connection, and access to ffmpeg libraries

Example #3: Yt-DLP - A CLI app using FFMpeg!

Metadata in snap-yt-dlp/snap/snapcraft.yaml
(https://github.com/soumyadghosh/snap-yt-dlp):

name: yt-dlp
title: YT-DLP
summary: A fork of youtube-dl with additional features and patches
description: |
 Based on youtube-dl 2021.06.06 commit/379f52a and
 youtube-dlc 2020.11.11-3 commit/98e248f, youtube-dl offers all the
 features and patches of youtube-dlc in addition to the latest youtube-dl
adopt-info: yt-dlp
grade: stable
confinement: strict
base: core24
platforms:
 amd64:
 arm64:
 armhf:

Example #3: Yt-DLP - A CLI app using FFMpeg!

https://github.com/soumyaDghosh/snap-yt-dlp

Apps entry in ~/tldr-python-client/snap/snapcraft.yaml
(https://github.com/soumyadghosh/snap-yt-dlp):

apps:
 yt-dlp:
 command: usr/bin/yt-dlp
 plugs: [home, network, network-bind, removable-media]
 environment:
 PYTHONPATH: ${SNAP}/usr/lib/python3/dist-packages:${PYTHONPATH}
 LD_LIBRARY_PATH: ${SNAP}/ffmpeg-platform/usr/lib/
${CRAFT_ARCH_TRIPLET_BUILD_FOR}:${LD_LIBRARY_PATH}
 PATH: ${SNAP}/ffmpeg-platform/usr/bin:${PATH}
 REQUESTS_CA_BUNDLE: /etc/ssl/certs/ca-certificates.crt

Example #3: Yt-DLP - A CLI app using FFMpeg!

https://github.com/soumyadghosh/snap-yt-dlp

Example #3: Yt-DLP - A CLI app using FFMpeg!

Plugs entry in ~/tldr-python-client/snap/snapcraft.yaml
(https://github.com/soumyadghosh/snap-yt-dlp):

This is the place, where we give our snap access to the shared content snap,
plugs:
 ffmpeg-2404:
 interface: content
 target: ffmpeg-platform
 default-provider: ffmpeg-2404

https://github.com/soumyadghosh/snap-yt-dlp

Example #4:

GNOME Text Editor

Your application everywhere, just in a Snap!

Example for an actual GNOME application
"extensions: [gnome]" in "apps:" entry: This includes the
GNOME snapcraft extension, saves work and resources

Adding GNOME, GTK, and desktop resources
Adding all needed plugs: "x11", "wayland", "desktop", "gsettings", …
Connects to the GNOME content provider Snaps which provide all libraries,
icons, themes, … –> Shared resources save storage space!
A snapcraft extension is for snapcraft.yaml like a *.inc for C files.

"desktop: FILE.desktop" in "apps:" entry: *.desktop for launcher icon
D-Bus (session bus) slot for GtkApplication registration
"layout:": To assure that auxiliary directories of the app can get accessed

Example #4: GNOME Text Editor – A GNOME
app!

Metadata in ~/examples/gnome-text-editor-workshop-examples/local-deb/snapcraft.yaml
(https://github.com/tillkamppeter/gnome-text-editor-workshop-examples):

name: gnome-text-editor

base: core24

grade: stable

confinement: strict

Summary: GNOME's Text Editor

Description: bla bla …

version: "46.3"

slots:

 # for GtkApplication registration

 gnome-text-editor:

 interface: dbus

 bus: session

 name: org.gnome.TextEditor

layout:

 /usr/share/gnome-text-editor:

i $ / / / i

Example #4: GNOME Text Editor – A GNOME
app!

https://github.com/tillkamppeter/gnome-text-editor-workshop-examples

Apps entry in ~/examples/gnome-text-editor-workshop-examples/local-deb/snapcraft.yaml
(https://github.com/tillkamppeter/gnome-text-editor-workshop-examples):

apps:

 gnome-text-editor:

 extensions: [gnome]

 command: usr/bin/gnome-text-editor

 desktop: usr/share/applications/org.gnome.TextEditor.desktop

 environment:

 GTK_USE_PORTAL: "1"

 GDK_DEBUG: "portals

 plugs:

 - home

 - removable-media

 - mount-observe

 - cups

Example #4: GNOME Text Editor – A GNOME
app!

https://github.com/tillkamppeter/gnome-text-editor-workshop-examples

There are several methods to get hold on the app for snapping it (~/examples/
gnome-text-editor-workshop-examples/,
https://github.com/tillkamppeter/gnome-text-editor-workshop-examples):

local-deb/: Local binary Debian package, no compiling or source needed, can
for example be a proprietary package to install on Ubuntu Core.
To try, get the deb for your core distro (like core24 → 24.04) from https://
launchpad.net/ubuntu/+source/gnome-text-editor

parts:
 gnome-text-editor:
 plugin: dump
 source: gnome-text-editor_46.3-0ubuntu2_amd64.deb
 source-type: deb

We must take care of (non-GNOME) dependencies, via stage-packages: (or adding
them in additional parts)

Example #4: GNOME Text Editor – A GNOME
app!

https://github.com/tillkamppeter/gnome-text-editor-workshop-examples
https://launchpad.net/ubuntu/+source/gnome-text-editor
https://launchpad.net/ubuntu/+source/gnome-text-editor

stage-packages/: App which is in Ubuntu as Debian package, simply pulled in as a
dependency, always for the correct architecture, but note that the dependencies of the
staged packages are also staged (and the GNOME ones are not needed, they are in the
content provider Snap).

parts:
 gnome-text-editor:
 plugin: nil
 source: .
 stage-packages:
 - gnome-text-editor

To do it correctly we will have to remove unwished files, so this method is better
for simple command line utilities.
The 2 previous methods were for quick-&-dirty snapping, let's do the real thing …

Example #4: GNOME Text Editor – A GNOME
app!

snap/: Build the app from source
The way for "official" Snaps (especially if you are upstream).
No (binary) Debian packages of the app involved.
Get official upstream source, ideally directly from its GIT repository using
release tags

When hosting the snapping on GitHub we can auto-update the Snap on new
upstream versions: https://ubuntu.com/blog/improving-snap-maintenance-
with-automation

Snapcraft plugins support common build systems:
autotools, make, cmake, flutter, rust, go, … Usually meson for GNOME apps
You only specify build configuration parameters, all commands are called
automatically.
 meson-parameters:
 - --prefix=/usr
 - --buildtype=release

Example #4: GNOME Text Editor – A GNOME
app!

https://ubuntu.com/blog/improving-snap-maintenance-with-automation
https://ubuntu.com/blog/improving-snap-maintenance-with-automation

Extract upstream version number, summary, and description and use it for
the Snap (from GIT, from code, from AppStream XML file, …)

At top level: "adopt-info: gnome-text-editor"
In gnome-text-editor part: "parse-info: <XML file>"
In gnome-text-editor app: "common-id: <App ID from XML file>"
In gnome-text-editor part scriptlet: "craftctl set
version=..."

Provide each app's icon as $SNAP/meta/gui/icons/hicolor/
scalable/apps/NAME.svg
and refer to it using "Icon=NAME" in the *.desktop file
Caching of icon theme directories: If caches for them are created with gtk-
update-icon-cache, less system calls and disk seeks. In override-prime: find
directories with index.theme file

Example #4: GNOME Text Editor – A GNOME
app!

Build the Snap with the usual
$ snapcraft pack -v --debug
Make sure that there is no classically installed GNOME Text Editor running
$ ps aux | grep gnome-text-editor
Close any still running instance.
Start your snapped GNOME Text Editor via
$ snap run gnome-text-editor
or
$ /snap/bin/gnome-text-editor
Both commands override the $PATH priority of /usr/bin
If you click "Activities" in the upper left and search, the second result should be the
Snap
All versions here generally work but spill different amounts of warnings into the
terminal

Example #4: GNOME Text Editor – A GNOME
app!

When building the Snap you get a warning that a needed library is missing, add a part to
stage all missing libraries:

 libraries:
 after: [gnome-text-editor]
 plugin: nil
 stage-packages:
 - libeditorconfig0
 prime:
 - usr/lib/*/libeditorconfig.so.*

Example #4: GNOME Text Editor – A GNOME
app!

Example #3:

GNOME Calculator

Your application everywhere, just in a Snap!

Have a look at another example

https://github.com/ubuntu/gnome-calculator.git

Many things are similar to GNOME Text Editor, but there is also
Summary and description are static, not taken from AppStream XML
Calculator does not print, so we do not plug “cups”
Instead of using "layout:" we use "--prefix=/snap/gnome-
calculator/current/usr" and "organize:"
In "override-build:" We patch out the documentation building in meson.build,
documentation does not make sense in a Snap
"cleanup:" part: Core Snap and GNOME content provider Snaps contain a lot
of files of which we get duplicates by build-packages and stage-packages and
their dependencies. Remove them systematically (Check linter in build
process!!).

Example #3: GNOME Calculator – Stepping it up!

https://github.com/ubuntu/gnome-calculator.git

Your Turn!
Let's snap Your app!

Your application everywhere, just in a Snap!

Get the perfect snapper –
More info/Links

Your application everywhere, just in a Snap!

Example Snaps used here:
https://github.com/ubuntu/gnome-text-editor
https://github.com/ubuntu/gnome-calculator
https://github.com/OpenPrinting/ghostscript-printer-app

More Snap magic, not only for daemons, in my "Daemon Snapper's workshop"
(links to slides and exercises/examples):

https://events.canonical.com/event/2/contributions/42/
Workshop GNOME app Snap example from Olivier Tilloy, each commit in this
GIT repository is one step of the snapcraft.yaml development:

https://git.launchpad.net/~osomon/+git/secrets-snap/log/?h=main
Want to snap something cute? Qt/KDE apps? Jesús' talk from Akademy 2023:

https://github.com/jssotomdz/qt-snaps

More info/links:

https://github.com/ubuntu/gnome-text-editor
https://github.com/ubuntu/gnome-calculator
https://github.com/OpenPrinting/ghostscript-printer-app
https://events.canonical.com/event/2/contributions/42/
https://git.launchpad.net/~osomon/+git/secrets-snap/log/?h=main
https://github.com/jssotomdz/qt-snaps

GitHub workflow to auto-update your Snap on each upstream release:
https://ubuntu.com/blog/improving-snap-maintenance-with-automation

Ubuntu blogs from Oliver Smith about optimizing performance of Snaps:
https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-1
https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-2

https://ubuntu.com/blog/improving-firefox-snap-performance-part-3
https://ubuntu.com/blog/firefox-snap-updates-and-upgrades

And to know why we all are snapping like hell (all-Snap Desktop):
https://ubuntu.com/blog/ubuntu-core-an-immutable-linux-desktop

Want to watch some snappy videos? Here we go:
https://www.youtube.com/watch?v=TfB6QwR2GYg
https://www.youtube.com/watch?v=ido6kGmSHWI

More info/links:

https://ubuntu.com/blog/improving-snap-maintenance-with-automation
https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-1
https://ubuntu.com/blog/how-are-we-improving-firefox-snap-performance-part-2
https://ubuntu.com/blog/improving-firefox-snap-performance-part-3
https://ubuntu.com/blog/firefox-snap-updates-and-upgrades
https://ubuntu.com/blog/ubuntu-core-an-immutable-linux-desktop
https://www.youtube.com/watch?v=TfB6QwR2GYg
https://www.youtube.com/watch?v=ido6kGmSHWI

And at OpenPrinting we are also snappy:
http://www.openprinting.org/
https://openprinting.github.io/about-us/
https://openprinting.github.io/news/
https://snapcraft.io/publisher/openprinting
https://github.com/OpenPrinting

More info/links:

http://www.openprinting.org/
https://openprinting.github.io/about-us/
https://openprinting.github.io/news/
https://snapcraft.io/publisher/openprinting
https://github.com/OpenPrinting

Advanced Topics

Your application everywhere, just in a Snap!

Finding Dependencies

Your application everywhere, just in a Snap!

A Snap needs to include all dependencies of the application: Libraries, fonts, icons,
utilities, … There are several ways to find them:

Desktop apps: Use snapcraft extensions to cover most: "gnome", "kde-neon",
"flutter-...", …
Have a look at classic Debian (or RPM) packages. Overtake their
dependencies for the Snap
Investigate executables (and libraries) with the "ldd" command
Read upstream source documentation
Check the linter output in the end of the Snap build

Finding Dependencies

The GNOME extension and
library/resource Snaps

Your application everywhere, just in a Snap!

With "extensions: [gnome]" in an "apps:" entry we include the
GNOME snapcraft extension
A snapcraft extension is for snapcraft.yaml like a *.inc for C files
Saves a lot of work for the snapper, to not have to repeat GNOME-specific
stuff and update it separately in each Snap

Adds GNOME, GTK, and desktop resources
Adds all needed plugs: "x11", "wayland", "desktop", "gsettings", …
Connects to the GNOME content provider Snaps which provide all libraries,
icons, themes, …

Content provider Snaps contain files to be shared between other Snaps,
typically libraries, icons, themes for GUI apps for GNOME, KDE, Flutter, …

Snaps bringing all their dependencies get huge! Sharing helps.

The GNOME extension and library/resource
Snaps

TODO: More snapcraft extensions:
CUPS: Do both plug "cups" and add the content-provider blob to install the
CUPS Snap by a simple "extension: [cups]". See snapcraft.yaml of the GNOME
Text Editor
Printer Applications: A lot of repetition in the snapcraft.yaml and a lot of work
to apply updates in each of them … Imagine simply having parts to build a
classic CUPS driver plus an "extension: [retro-printer-app]" and that's it … See
https://github.com/OpenPrinting/ps-printer-app

The GNOME extension and library/resource
Snaps

https://github.com/OpenPrinting/ps-printer-app

App from source or binary?

Your application everywhere, just in a Snap!

With the GNOME Text Editor we have seen that one can build Snaps from binary
files or compile the source, what to use?

Source code, usually from upstream project (is that you?)
Free software/open-source only
Security: Auditable, choice of more secure compiler options, quick fixes
Adaptable to Snap file system and encapsulation
More frequent updates

Does not depend on goodwill of distro packagers, low frequency of Ubuntu LTS, …
Immediately grab upstream releases, even development snapshots
GIT-based update-automation: https://ubuntu.com/blog/improving-snap-
maintenance-with-automation
Especially important for hardware enablement (drivers)

Apps from source or binary?

https://ubuntu.com/blog/improving-snap-maintenance-with-automation
https://ubuntu.com/blog/improving-snap-maintenance-with-automation

Binary files
Allows snapping proprietary, closed-source software

Do not put into the Snap Store without permission!
For private use, like running the software on Ubuntu Core

Quick addition of software pieces as "stage-packages:"
Update only every 2 years with Ubuntu LTS
Pulls in all the package's dependencies, can be good, but also bad (desktop
apps with content provider Snap).

Less/no knowledge in compiling/patching/coding needed
Not adaptable, for file system paths, system users, chown, … So snapping
could get tricky

Apps from source or binary?

Patching the code

Your application everywhere, just in a Snap!

Why do we need to modify (patch) the upstream code?
Complex applications often get tricky to snap
Upstream's design did not take Snap into account
Upstream does not always accept the changes, or it takes time until the next
release
Even classic Debian/RPM packaging often needs patches

Examples for patching needs
Directory and file locations used are hard-coded, no options, config, …
A snapped service (with a slot) has to determine what the client Snap plugs,
to accept/deny inquiry
Application does operations which are not allowed under confinement (like
chown/chmod) but are also not needed under confinement

Patching the code

In snapcraft.yaml (only relevant lines, patch is in snap/local/ of your project
repository):

parts:
 my-application:
 override-build: |
 patch -p1 < $CRAFT_PROJECT_DIR/snap/local/log.patch
 craftctl default

Patching the code

Alternative: Command-line editing with "sed" or "perl":
In snapcraft.yaml (only relevant lines):

parts:
 my-application:
 override-build: |
 sed -i.bak -e 's|Icon=@app_id@$|Icon=app.icon|g' \
 app.desktop.in.in
 perl -p -i -e 's/chown lp.lp file//' script.sh
 craftctl default

Patching the code

Interfaces: Safe vs. Dangerous

Your application everywhere, just in a Snap!

Snapped applications are completely encapsulated (AppArmor, seccomp,
namespaces)
By default, they cannot communicate with the host system or with other Snaps
Communication is possible via well-defined interfaces: "network", "cups",
"dbus", …
A "plug" has to be connected with a "slot" of the system or of another Snap in
order to communicate

“Safe” interfaces
Ex.: “cups” which allows listing available printers and printing
are auto-connected when installing from Snap Store

“Dangerous” interfaces
Ex.: “cups-control” which allows creating/removing printers, delete all jobs …
need manual connection or permission from Snap Store team for auto-
connection

Interfaces: Safe vs. Dangerous

Cleaning up …

Your application everywhere, just in a Snap!

Snaps containing all the app's dependencies can get very large
So we should take care not to pack too much
We should not include (or remove):

Header files of libraries (*.inc), pkgconfig files (*.pc), static libraries (*.a), *.la,
lintian
Development utilities
Man pages and other documentation, examples
/var
Library binaries which are reported unused by the linter
Files which the desktop's/GUI toolkit's content provider Snap already contains
Parts of the upstream package we do not need in this Snap (if we need libcups
of the CUPS package, remove cupsd)

Cleaning up …

How to remove/clean up:
"Negative" entries in "prime:"

 prime:
 - -usr/include
 - -usr/lib/pkgconfig
 - -usr/share/fonts
 - -usr/share/man
 - -usr/share/doc
 - -usr/share/doc-base
 - -usr/share/lintian

Use this especially if the linter tells you at the end of the build that you have
unused libraries.

Cleaning up …

Do not build the whole source code (via "override-build:") or build ("./
configure") parameters
Skip "make install", manually copy selected files (via "override-build:")

override-build: |
 set -eux
 ./configure --sysconfdir=/var/snap/...
 cd cups
 make
 cd ..
 cd filter

 make rastertoepson
 cd ..

 mkdir -p $CRAFT_PART_INSTALL/usr/lib

 cp cups/libcups*.a $CRAFT_PART_INSTALL/usr/lib/

 cp -P cups/libcups*.so* $CRAFT_PART_INSTALL/usr/lib/
 [...]
 mkdir -p $CRAFT_PART_INSTALL/usr/lib/ghostscript-printer-app/filter
 cp filter/rastertoepson $CRAFT_PART_INSTALL/usr/lib/ghostscript-printer-app/filter

#craftctl default # DO NOT do the default action here!!

Cleaning up …

Build from source instead of pulling it as "stage-packages:", then
adapt/customize

The Ghostscript Printer Application Snap contains many printer drivers which
Debian provides as "printer-driver-..." Debian packages
The packages depend on CUPS (the daemon), Ghostscript, QPDF, and a lot of
other things
As we have the CUPS daemon in the CUPS Snap and build the other
dependencies by ourselves from source for newer versions (than Ubuntu LTS)
and updates, we avoid "stage-packages:" here and build from source
But we use the source of Debian's packaging repos to get it with Debian's
patches

Cleaning up …

"cleanup:" part applied in the very end of Snap build
Spot duplicate files (here libraries), especially also duplicates with the content
provider Snaps for the dektops/GUIs
cleanup:
 after: [gnome-calculator]
 plugin: nil
 build-snaps: [core24, gtk-common-themes, gnome-46-2404]
 override-prime: |
 set -eux
 for snap in "core24" "gtk-common-themes" "gnome-46-2404"; do
 cd "/snap/$snap/current" && \
 find . -type f,l -name *.so.* \
 -exec rm -f "$CRAFT_PRIME/{}" \;
 done

Cleaning up …

