
What's going on with Snaps on
Ubuntu Touch?
A technical deep dive

Alfred Neumayer, 2024

Agenda

Ubuntu Touch architecture

libhybris involvement

snapd changes

Integration changes

The All-Snap (TM) deal

Ubuntu Touch architecture

Kernel

Early boot

Rootfs

Halium

Individual pieces

Ubuntu Touch architecture

Mainline devices

Mainline kernel

Mesa

Most things work already

Halium devices

Android drivers and HAL processes

Modified Android vendor kernels

Ways of operation

Wait what?

Android's generational fragmentation

Kernelspace

Graphics and memory allocation

Out-of-memory killer in Android < 9.0

Userspace

Interfaces to kernel APIs

"Binderization" of HALs vs loading Android libraries

Initramfs vs Initramfs-less vs Multiple Concatenated Initramfs

Introduction of A/B boot slots

Ding dong: time to resolve differences

Kernel

AppArmor

Downstream patches taken from a similar LTS patchset

Applied on top of Android vendor kernel

Enabling namespaces & various kernel features

Namespacing for Halium LXC container

CONFIG_VT, CONFIG_SYSVIPC

Keeping kernel ABI stable

Requirements

Kernel

Generic Kernel Images

Stable kernel interface

Android vendors must follow

Kernel modifications to keep struct sizes compatible

Padding for struct members

Android standardization

Kernel
SYSVIPC ABI compatibility

Kernel
Enabling POSIX_MQUEUE

Kernel
Device access with cgroups v2 & eBPF

Early boot

initramfs-tools-halium

Fork of Ubuntu Touch’s previous initramfs

Builds on top of Debian initramfs environment

Optionally sets up Android super partition

Mounts system & writable userdata partitions

Mounts early writable bind-mounts from /etc

Very similar to Ubuntu Core’s previous initramfs

Reason: It looks like a regular GNU/Linux bootup environment

initramfs

Early boot

Jumpercable

Soft-fork of initramfs-tools-halium

Simple Bash script setting up basic environment

Sits in /init in the rootfs/system partition

Mounts writable userdata

Mounts early writable /etc bind-mounts

Chainloads systemd afterwards

Reason: Google made the recovery partition optional in Android 9

initramfs-less

Early boot

Introduced in Android 12

Android ships a generic initramfs

Vendors add their own in a separate partition

Setup scripts

Kernel modules

Concatenated by the bootloader

Gets Halium initramfs concatenated with it

Passed to the kernel

Reason: Google reintroduced recovery partitions + A BUNCH OF OTHERS

Concatenated initramfs

Early boot

Introduced in Android 10

LVM-style volume container

Custom header format

Convertible to something usable using parse-android-dynparts

Contains vendor blobs in various volumes

With A/B variants per volume

Android’s "super" partition

Rootfs

Ubuntu as a base

arm64, amd64, armhf

systemd

Typical Ubuntu userspace libraries and services

lxc-android-config

Mounts typical Android partitions

Sets up remaining writable paths from read-only partition to writable partition

Initializes Halium LXC container

Sets up optional device-specific hacks

The actual system

Rootfs

Additional services

Mir for handling displays and input

Device-specific services (telephony, sensor frameworks...)

ofono

sensorfw

hfd-service

Functionality & UX services (online accounts, download manager...)

Providing usability

Halium

Stripped down Android environment (mostly C/C++ components)

Running in a LXC container

Android /init starts HAL services

Just enough to have hardware enablement services running

Typically used IPC mechanisms:

Sockets

Binder

Hardware enablement

Halium

Android „Generic system image“

One single Android /system for all devices

Started with Project Treble

Eases burden on device port maintainers

Binderized HALs shine here

Generic system images

Binder

In-kernel IPC

Multiple contexts

One for the Android framework (or our stub services)

One for hardware services

One for vendor services

Previously: debate about D-Bus-over-Binder

Discussions stopped

Main reason: differences in threading model

Android's preferred IPC mechanism

Hardware support

Different services drive our hardware stack

PulseAudio hybris-loads Android audio HAL .so↔
sensorfw Halium-side vendor sensor HAL↔
repowerd Halium-side vendor PowerHAL↔
ofono Halium-side vendor RIL daemon↔
NetworkManager

Location services Halium-side vendor GPS HAL↔
Deprecating the unity8 platform-api

GPS is the only remaining consumer

Make it work

Halium overlays

Configurations differ between devices

Often between devices of the same SoC manufacturer

Halium overlays

Checks for files to overlay from multiple places

Released as device tarballs

Refreshed from UBports CI & system-image

Hint: a true device integration ("port") needs this

Hardware enablement

libhybris

Android library loader built as a glibc library

Provides glibc wrappers for libEGL, libGLESv2 etc.

Shoves in Wayland listeners to handle Android buffer passing

Requires some ability to talk to typical Android services

"Which linker should I use?"

-> asks over a socket to the property service running in Halium container

Resolves symbols with the correct linker

Making drivers pop

libhybris

Typical procedure when used by an app

Load libEGL & libGLESv2

Resolve glibc symbols to bionic libc equivalents

Optionally set up hooks for redirection

Call bionic function in the back when calling glibc function

"Compatibility layers"

Media encoding & decoding (OMX)

Camera (Android camera stack)

Graphics (Android’s GraphicBuffers)

As used in the wild

libhybris

Using Mirclient:

libhybris driver userspace gets loaded

Linker setup

Mirclient Android client implementation gets loaded

Android EGL initializes in the back

The old way

libhybris

Using Wayland:

libhybris driver userspace gets loaded

Linker setup

wayland-egl loads libhybris’ libEGL implementation

Sets up Wayland buffer passing on active socket

Android EGL initializes in the back

The new way

TLS padding hack

Processes have two libc implementations loaded now

glibc process starts up

libhybris loads bionic libraries afterwards

Both might have different thread-local storage requirements

Proprietary drivers statically linking bionic

Solution: LD_PRELOAD a library with the only contents being:

thread_local void* tls_padding[16];

An ugly necessity

snapd changes

Kernels need adaptations for Snap support

AppArmor is recommended

SQUASHFS with compression

Potentially requires device cgroup v2 enablement

Relies on device maintainers

Fulfilling requirements

snapd changes

Enablement patches for running on Ubuntu Touch

Read-only rootfs

Not classic, not Snap-only

Needs to choose ways appropriate for environment

libhybris environment setup

extrausers

Making it work

Integration changes

Services integration with Snaps

Content Hub

Media Hub

Download Manager

Online Accounts

Adaptations due to Lomiri renaming

D-Bus interfaces & AppArmor policies

Hooking things up

Content Hub would need metadata generated by snapd

Ubuntu Touch apps in the Snap Store?

The All-Snap (TM) deal

Vendor blobs are often enough not redistributable

We need /android + symlinks in many Snap runtime environments

Early-boot challenges from version to version

snapd & Gadget Snaps are too far away (right now) to work with Android
bootloaders

Google dictates the partition layout, not you or me

Still old vendor kernels, but we’ve learned to live with it

Ubuntu Core on Android hardware?

The All-Snap (TM) deal

Personal idea: Snapium

Halium initramfs partition setup + Ubuntu Core initrd

No idea how much Core initrd diverged from Debian initrd

Project outside of customer-focused Ubuntu Core

Initial mindset: "It might never truly be Ubuntu Core"

No proof-of-concept yet

Hire me?

Let’s get shot done!

... maybe?

Resources

https://ubuntu-touch.io

https://ubports.com

https://halium.org

https://lomiri.com

https://fredl.me

Learn more & how to join

https://ubuntu-touch.io/
https://ubports.com/
https://halium.org/
https://lomiri.com/

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

