
Snap Quickstart
Workshop

Ubuntu Summit 2024

Past iterations

Contents

● GTK snap walkthrough
● Interactive part

○ Create example step-by-step
○ Or create your own snap

https://github.com/snapcrafters/snap-quickstart-workshop

https://github.com/snapcrafters/snap-quickstart-workshop

Setup

1. Install snapd (not needed on Ubuntu)

○ Install the package: https://snapcraft.io/docs/installing-snapd
○ And add classic snap support:

sudo ln -s /var/lib/snapd/snap /snap

2. Install Snapcraft
○ sudo snap install snapcraft --classic

3. Install LXD
○ sudo snap install lxd
○ sudo adduser `whoami` lxd

https://snapcraft.io/docs/installing-snapd

GTK Hello World
Example 1

Building without snap
● Create the file ~/exercises/hello-world-gtk/src/hello-world-gtk.c
● Add the source code from

https://www.gtk.org/docs/getting-started/hello-world
● Build the app

$ cd ~/exercises/hello-world-gtk/src
$ sudo apt install libgtk-4-dev

$ gcc $(pkg-config --cflags gtk4) -o hello-world-gtk \
 hello-world-gtk.c $(pkg-config --libs gtk4)

● Run the app

$./hello-world-gtk

● Remove the app

$ rm ./hello-world-gtk

https://www.gtk.org/docs/getting-started/hello-world

Creating the snap - snapcraft.yaml

File explaining how to build the app itself and the snap

● metadata: Name, version, summary, description, …

● apps:
○ How to execute your app
○ What permissions to give your app

● parts:
○ How to build the binaries
○ What libraries your app needs

First: how to make a snap

kcalc/snapcraft.yaml

kcalc.snap

/snap/kcalc

$ snapcraft

$ sudo snap install kcalc.snap --dangerous

gtk-hello-world - snapcraft.yaml
Complete example: https://github.com/snapcrafters/snap-quickstart-workshop

https://github.com/snapcrafters/snap-quickstart-workshop

Branding metadata
Visible in the Snap Store

● Name must be lowercase letters, numbers and hyphen
● Version is a string
● Summary must be one line
● Description can be multiline

More info: https://snapcraft.io/docs/snapcraft-yaml-schema

https://snapcraft.io/docs/snapcraft-yaml-schema

Technical metadata
Describes the snap’s technicalities

● base defines the Ubuntu version to use inside the snap
○ “core24”: Ubuntu 24.04
○ “core22”: Ubuntu 22.04

● confinement defines sandbox
○ “devmode” gives all access but logs
○ “strict” for regular sandbox
○ “classic” for no sandbox

● compression of the snap package
○ Always use “lzo” for best startup time!

More info: https://snapcraft.io/docs/snapcraft-yaml-schema

https://snapcraft.io/docs/snapcraft-yaml-schema

Apps
How to execute your apps & what permissions to give

➔ extensions add common functionality
◆ gnome adds GUI & GTK support
◆ kde adds GUI & Qt support

➔ command is the path to the binary, relative from snap root
➔ plugs describes the permissions to give your app

◆ Supported permissions: https://snapcraft.io/docs/supported-interfaces

More info: https://snapcraft.io/docs/snapcraft-yaml-schema#app-directives

https://snapcraft.io/docs/supported-interfaces
https://snapcraft.io/docs/snapcraft-yaml-schema#app-directives

Slots
Desktop apps need access to session dbus for common functionality. This
needs a declaration in slots.

● interface: dbus
● name: unique id of the app
● bus: session

More info: https://snapcraft.io/docs/dbus-interface

https://snapcraft.io/docs/dbus-interface

Parts
Describes

● How to compile your app
● What dependencies it needs.

One part for each component that
needs to be built separately

● C++
● Python
● Go

More info: https://snapcraft.io/docs/adding-parts
Deep info: https://snapcraft.io/docs/parts-lifecycle

https://snapcraft.io/docs/adding-parts
https://snapcraft.io/docs/parts-lifecycle

Plugin
Which build system to use

● Binary packages or installers
○ dump: copy files (or DIY)

● source code
○ python
○ cmake
○ meson

● DIY with a scripts
○ dump or nil

More info: https://snapcraft.io/docs/supported-plugins

https://snapcraft.io/docs/supported-plugins

Source
Where to get source code or binaries.

● Folder in repo with snapcraft.yaml
● External repo
● Remote file

More info: https://snapcraft.io/docs/supported-plugins

https://snapcraft.io/docs/supported-plugins

Override-build
Change default build logic of plugin
with bash script

● call compilers directly
● prepare environment
● run default logic

○ craftctl default

More info: https://snapcraft.io/docs/overrides

https://snapcraft.io/docs/overrides

Build-packages
Tools needed to build the snap

● Compilers
● SDK libraries
● Build tools

Will not be present in the final snap

More info: https://snapcraft.io/docs/overrides

https://snapcraft.io/docs/overrides

Stage-packages
Dependencies needed to run the
app.

(and that are not part of an
extension)

Will be in the final snap

More info: https://snapcraft.io/docs/overrides

https://snapcraft.io/docs/overrides

Thanks! Questions?

Now it’s your turn!

● Either follow the tutorial:
https://github.com/snapcrafters/snap-quickstart-workshop

● Or try snapping your own app and we’ll help you out!
● Or try snapping these snaps may be?

Marktext or Marknote

https://github.com/snapcrafters/snap-quickstart-workshop
https://github.com/marktext/marktext
https://invent.kde.org/office/marknote

Next steps

● AppStream via adopt-info
● Specify architectures -> see CI workshop
● Channels and tracks -> see CI workshop
● Building dependencies from source

AppStream as Metadata via adopt-info

Appstream Metadata => Snap
Metadata

Parse the metadata from a part

Let snapcraft know that “this”
part will be used as the source
of metadata

Architectures…

Snaps can be built on arches that is supported by Ubuntu and the
list is huge. Check here to know the list.

In the snap manifest, you should explicitly mention the
architecture… But, why? To know that, join the workshop
tomorrow on the CI that we use to maintain and publish our snaps
by us at 2PM….

https://snapcraft.io/docs/reference-architectures#supported-architectures
https://events.canonical.com/event/51/contributions/587/
https://events.canonical.com/event/51/contributions/587/

Build your dependencies from source

Build your deps in different parts!

● Benefits
○ Latest updates and releases
○ Support for custom patches
○ Everything on your control

● Disadvantages
○ Complexity
○ Miss the CVE checks done by Ubuntu for its archive packages

Things to help you in the process

● Use Gnome/KDE extensions if the libraries are related to this
● Use ffmpeg or webkitgtk shared library snaps, if your app

needs them
● Try keeping the files only that your app needs
● Try to keep your snap populated with all the possible

metadata you can add

https://github.com/snapcrafters/ffmpeg-2404-sdk
https://github.com/snapcrafters/webkitgtk-sdk

