
Developer Tooling
for

Cloud Native Applications
Dive, multistage-builds, docker-squash

Raghavendra Sirigeri
Founder, Questodev

(https://www.linkedin.com/in/raghavendra-sirigeri/)

https://www.linkedin.com/in/raghavendra-sirigeri/

Agenda

‣Containers under the hood

‣Overlay Filesystems

‣Docker Image Layering

‣Optimising Build Times

‣Docker-dive for Image analysis

‣Docker-squash for squashing layers

How can we isolate two processes?

Process BProcess A

Enter NAMESPACES..

DEMO

Mounting and Mount Points

Mounting is the
process of making a

filesystem accessible at
a certain point in the

directory tree of a
system.

A mount point is a
directory in the

filesystem where a
mounted filesystem
becomes accessible

Bind Mount Point

A bind mount is a type of mount in Linux and Unix-like operating systems where a
directory or file is mounted to another location in the filesystem. Unlike a traditional
mount, which typically involves mounting a filesystem from a storage device, a bind

mount simply creates an additional reference to an existing directory or file in a
different location.

/Dir2

/Dir1

Overlay Filesystems - Quick Walkthrough

Lower Layer

Upper Layer

Overlay Layer

Essentially comprises of 3 layers

Overlay Filesystems - Quick Walkthrough

LL1.TXT, LL2.TXT

UL1.TXT, UL2.TXT

Overlay Layer

• Overlay FS is a type of Union FS

• Union of all files and dirs from Lower and Upper Layer

• Lower Layer is READ-ONLY

• Any change done to files originally from Lower Layer in the Overlay Layer will create new COPY-
ON-WRITE file of the the modified file in the upper layer as the Lower layer is READ-ONLY

• When you modify any of the files in the overlay layer which were originally from the lower layer,
a copy (COPY-ON-WRITE) of that gets created in the upper directory and that is where the
modifications go.

UL1.TXT, UL2.TXT

LL1.TXT, LL2.TXT, UL1.TXT,
UL2.TXT

LL1.TXT, LL2.TXT

Overlay Filesystems - Demo

LL1.TXT, LL2.TXT

UL1.TXT, UL2.TXT

Overlay Layer

$ sudo mount -t overlay -o
lowerdir=lower_dir/,upperdir=upper_dir,workdir=work_dir/ none
merged_dir/

Work Directory is used by the system as a temporary work area for internal purposes

Work Directory

merged_dir

upper_dir

lower_dir

work_dir

Overlay Filesystems - Quick Walkthrough

DEMO

How to build a container image

Dissecting Container Images

Each intermediate
layer have their own
overlay filesystem

which are chained to
gather to give the final

image

DEMO

Image Layering in Depth

Alpine 3.6 Python 3.8 C++ Helloworld.py

Base Image Image 1 Image 2 Image 3

C++ Libs

Overlay Layer

Dir1 Dir2

Python Libs

Overlay Layer

Dir1

Alpine FS

Overlay Layer

Helloworld.py

Overlay Layer

Dir1 Dir2 Dir3

Upper
Layer

Lower
LayerLegend

Scenario 1 - Simple Node.js App

FROM node:22
WORKDIR /app
COPY package.json package-lock.json ./
RUN npm install
COPY . .
CMD node server.js

FROM node:22
WORKDIR /app
COPY . .
RUN npm install
CMD node server.js

VS

Hint: Think in terms of
subsequent build

times when source
code changes

Scenario 1 - Simple Node.js App

FROM node:22
WORKDIR /app
COPY package.json package-lock.json ./
RUN npm install
COPY . .
CMD node server.js

FROM node:22
WORKDIR /app
COPY . .
RUN npm install
CMD node server.js

VS

These layers are
cached as no changes
are done here and can
be easily retrieved in

subsequent builds

Scenario 1 - Simple Node.js App

FROM node:22
RUN apt-get update
RUN apt-get install sqlite3
WORKDIR /app
COPY package.json package-lock.json ./
RUN npm install
COPY . .
CMD node server.js

FROM node:22
RUN apt-get update && apt-get install sqlite3 redis
WORKDIR /app
COPY . .
RUN npm install
CMD node server.js

VS

If a new package has to be
installed the cached layer

corresponding to apt-get update
will contain old package cache

and the newly installed package
may be outdated.

Optimising Build Times

• During incremental build we want to ensure that we can use build cache effectively
to avoid high build times. For example COPY . /app should not be done early in the
Dockerfile as any changes to the code will invalidate the build cache.
ORDER FROM LEAST TO MOST FREQUENTLY CHANGING CONTENT.

• Only copy whats needed. Avoid COPY . if possible because any changes to the files
will bust the cache

• Line buddies - apt-get update and apt-get install should be done together rather
than in separate lines. If a new package has to be installed the cached layer
corresponding to apt-get update will contain old package cache and the newly
installed package may be outdated.

Scenario 2 - Reducing Docker Image Size

{
 "name": "scenario-1-simple-node-
app",
 "version": "1.0.0",
 "main": "server.js",
 "scripts": {
 "test": "echo \"Error: no test
specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "description": "",
 "dependencies": {
 "express": "^4.19.2"
 },
 "devDependencies": {
 "eslint": "^9.5.0",
 "mocha": "^10.4.0",
 "nodemon": "^3.1.4"
 }
}

Do we need these
during runtime?

Not really

FROM node:22
WORKDIR /app
RUN apt-get update && apt-
get install libcairo2-dev
libjpeg-dev libgif-dev
libpango1.0-dev -y
COPY package.json package-
lock.json ./
RUN npm install
COPY . .
CMD node server.js

Results in an image of
size 1.3GB

Scenario 2 - Reducing Docker Image Size
Node:22 base image layers and size is more than 1 GB

Scenario 2 - Multi-stage builds

FROM node:22 as builder
WORKDIR /app
COPY package.json package-lock.json ./
RUN npm install
COPY . .

FROM node:22-slim
WORKDIR /app
COPY --from=builder /app .
RUN npm install --only=production

CMD node server.js

BUILD Stage

RUNTIME Stage

Huge Reduction in image size from 1.2 GB to < 300MB

Scenario 3 - Installing awscli in our Docker Image

FROM node:22 as builder
WORKDIR /app
RUN apt-get update && apt-get install libcairo2-dev
libjpeg-dev libgif-dev libpango1.0-dev -y
COPY package.json package-lock.json ./
RUN npm install
COPY . .

#Runtime
FROM node:22-slim
WORKDIR /app
COPY --from=builder /app .
RUN npm install --only=production

Installing awscliv2
RUN apt-get update && apt-get install curl unzip -y
RUN curl "https://awscli.amazonaws.com/awscli-exe-linux-
x86_64.zip" -o "awscliv2.zip"
RUN unzip awscliv2.zip && ./aws/install

CMD node server.js

Image size of 777 MB

Scenario 3 - Installing awscli in our Docker Image

Scenario 3 - Installing awscli in our Docker Image

FROM node:22 as builder
WORKDIR /app
RUN apt-get update && apt-get install libcairo2-dev
libjpeg-dev libgif-dev libpango1.0-dev -y
COPY package.json package-lock.json ./
RUN npm install
COPY . .

#Runtime
FROM node:22-slim
WORKDIR /app
COPY --from=builder /app .
RUN npm install --only=production

Installing awscliv2
RUN apt-get update && apt-get install curl unzip -y
RUN curl "https://awscli.amazonaws.com/awscli-exe-linux-
x86_64.zip" -o "awscliv2.zip"
RUN unzip awscliv2.zip && ./aws/install
RUN rm -rf awscliv2.zip ./aws
CMD node server.js

Image size is still
 777 MB

Whats happening
here?

Hint: Overlay
filesystems Lower

Layer Characteristic

Scenario 3 - Installing awscli in our Docker Image

FROM node:22 as builder
WORKDIR /app
RUN apt-get update && apt-get install libcairo2-dev
libjpeg-dev libgif-dev libpango1.0-dev -y
COPY package.json package-lock.json ./
RUN npm install
COPY . .

#Runtime
FROM node:22-slim
WORKDIR /app
COPY --from=builder /app .
RUN npm install --only=production

Installing awscliv2
RUN apt-get update && apt-get install curl unzip -y
RUN curl "https://awscli.amazonaws.com/awscli-exe-linux-
x86_64.zip" -o “awscliv2.zip" && unzip awscliv2.zip
&& ./aws/install && rm -rf awscliv2.zip ./aws
CMD node server.js

Image size is now 506 MB

Scenario 4 - Docker squash

Squashing layers can be beneficial if your Dockerfile produces multiple layers
modifying the same files. For example, files created in one step and removed in

another step.

We saw this with our awscli package where we wanted to get rid of the download
files and bloatware but using the rm command had no effect.

LETS NOW TRY TO SQUASH THE NODE-
SAMPLE-AWSCLI-IMAGE!

Once the image is built, docker-squash combines the new layers into a new image
with a single new layer. Squashing doesn't destroy any existing image, rather it

creates a new image with the content of the squashed layers. This effectively makes
it look like all Dockerfile commands were created with a single layer.

$ docker-squash -t node-sample-after-squash node-sample-awscli-rm-v1

Scenario 4 - Docker squash

LETS NOW TRY TO SQUASH THE NODE-
SAMPLE-AWSCLI-IMAGE!

$ docker-squash -t node-sample-after-squash node-sample-awscli-rm-v1

NEW IMAGE IS close to 480 MB compare to the original 770
MB!

Scenario 4 - Docker squash

Limitations -

•When squashing layers, the resulting image can't take
advantage of layer sharing with other images, and may use
significantly more space. Sharing the base image is still
supported.

•While squashing layers may produce smaller images, it may
have a negative impact on performance, as a single layer
takes longer to extract, and you can't parallelize
downloading a single layer.

Resources

• Udemy course - https://www.udemy.com/course/
containers-under-the-hood/

• https://github.com/wagoodman/dive
• https://github.com/goldmann/docker-squash
• Dockerfile Best Practices - https://www.youtube.com/

watch?v=JofsaZ3H1qM&t=1945s

https://www.udemy.com/course/containers-under-the-hood/
https://www.udemy.com/course/containers-under-the-hood/
https://www.udemy.com/course/containers-under-the-hood/
https://github.com/wagoodman/dive
https://github.com/goldmann/docker-squash
https://www.youtube.com/watch?v=JofsaZ3H1qM&t=1945s
https://www.youtube.com/watch?v=JofsaZ3H1qM&t=1945s
https://www.youtube.com/watch?v=JofsaZ3H1qM&t=1945s

About Questodev

https://questodev.com

