1

LINUX KERNEL E-BPF:
CONCEPTS AND USE CASES

BE Computer from COEP Pune.

20 + years of IT industry experience working mainly on Linux Kernel,

System programming in various domains

Core Contributor in Linux kernel 2.6.36 development cycle (Year:2010)

Delivered sessions in many open source events, meetups, Foss.in, Nasscom

webinar.

Many open source events OpenStack Boston (2017), DockerCon San Franciso
(2018), VMWorld, Cisco Live, Kubernetes Forum Banglore 2020

1} \ : \

-
-

O

\CROWDSTRIKE

mainQ

__libc_read()

push a.ré uments
_libe_read()

P

pop argumernts

S

load args to regs
EAX =__ NR_read
int 0x80

&

check error
return

::ﬂ

archf/i3B6/kernelientry.S fsfread_write.c filesystem or network or
system_call) sys_read() device code
SAVE_ALL

check limit of EAX
syscall_tab[EAX]()

[:

handle signals
possibly schedule
RESTORE_ALL
iret

e

User space

o

file =fget(fd)
check file ops
check file lbcks
(file->f_op->read)()

fput(file)
return

:ﬂ

AN

check destination
retrieve data
copy data
return

el |

Kernel space

BCC Library
|

Userspace
Program in JIT Compiler
C++or

Python (as

root)

Polling Data

/

16

* BPF: Original network packet filtering, but extended ability to call
kernel functions (eBPF) - 3.15 kernel

* eBPF : subset of C and compiled into bytecode

* eBPF sandbox. Copy data into sandbox and to perf ring buffer (user
space reads from the buffers)

« BCC -The BPF Compiler Collection, built with LLVM and Clang

 bpftrace - “a high-level tracing language” for eBPF, similar to awk, can

be utilized from command line

 Kernel Code - eBPF’sVM lives in the Linux kernel.

. User space Kernel
* Load and execute in kernel

e ~\

free. bce-tool Back-end eBPF
* JIT compiler: bytecode -> : , L ibbecso |11 F eBPF
) Front-end ' bytecode
machine code. Y
Python Compiling
clang eBPF maps
* Maps: Lua
A
. olan
* Sharing of data — —» libbpf.so
C/C++
* Ring buffers ‘
Load program & read data
* Hash tables, arrays 5 kprobes/
Trace and probe ops ftrace

Apps vsS kmods vs eBPF

Tools and applicationg

- Command language interpreter
- e.g. Bash shell

Applications
Openoffice, chrome etc.

Kernel : main OS

- Add kernel module functionality using
insmod

-Device drivers, interrupt handling etc.

-eBPF
- Re-Programming the kernel without
source code changes or loading modules

- Observability, traceability

Libbpf + CO-RE

Clang front-end to modify user-written BPF programs.
Difficult to find the problem and figure out a solution

directly use the libbpf library provided by kernel
developers to develop BPF programs.

Need to remember naming conventions and automatically
generated tracepoint structs.

Libbpf acts like a BPF program loader and relocates, loads,
and checks BPF programs. BPF developers only need to
focus on the BPF programs’ correctness and
performance.

When a tool starts, it takes many CPU and memory
resources to compile the BPF program. Complete
libraries need to be available and run at compile time.

No need of system-wide dependencies to be present on
the target machine for running.

It reduces the overall application size as well as resource
consumption on runtime.

BCC depends on kernel header packages, which you
must install on each target host.

Libbpf enables you to generate binaries that are compiled
once and can be run anywhere.

Kernel sources

¥

bcc_common.cc

Python

E Create
p EFFModule
-] Y
(=1
script 1 bee § | bec_module.cc
bpf _prog_load, ¥
bpf_attach_kprobe,
b:rl_map_lnc-kup. CLANG / LLVM
elc..
i
. bpfl_create_map
e Libbpf.c [
tracefs ops
:5;23'” (also perf, tracefs, kprobes)

kernel

Component '|' Commands
Memory top,free, vmstat, mpstat, iostat, sar
CPU top,vmstat, mpstat, iostat, sar
1/O vmstat, mpstat, iostat, sar
Processes ipcs, ipcrm
bpftrace/eBPF Tools
opensnoop statsnoop bashreadline gethostlatency
SYyncsnoop |
syscount
i i killsno
vEscount Applications op
visstat Runtimes
System Libraries
writeback \ f execsnoop
System Call Interface — pidpersec
==
£ L
bpftrace VES Sockets cpuwalk
A Scheduler ;32‘1%::‘1
xfsdist » File Systems TCP/UDP , '“\)
of fecputime
dflush _._anume Manager IP Virtual
’______._--"" Block Device Net Device MEmnCH \“ mkill
biosnoop oomik1
biolatenc . .
Y biie:i':g o Device Drivers
tcpconnect tcpaccept Other:
tcpretrans tcpdrop capable

Diagram by Brendan Gregg, early 2019, https:/fgithub.comfiovisor/bpftrace

Type
tracepoint
usdt
kprobe
kretprobe
uprobe
uretprobe
software
hardware
watchpoint
profile

interval

Description
Kernel static instrumentation points
User-level statically defined tracing
Kernel dynamic function instrumentation
Kernel dynamic function return instrumentation
User-level dynamic function instrumentation
User-level dynamic function return instrumentation
Kernel software-based events
Hardware counter-based instrumentation
Memory watchpoint events (in development)
Timed sampling across all CPUs

Timed reporting (from one CPU)

Dynamic
Kernel space: kprobes

User space: uprobes

Static:

Kernel trace points

USDT (statically
defined)

eBPF: extended Berkeley Packet Filter

User-Defined BPF Programs Kernel
SDN Configuration \ Runtime Event Targets
DDoS Mitigation =
2 ——T— verifier 529G
Intrusion Detection /7 / kprobes
Container Security / o uprobes
— Observability | § tracepoints
. . BPF
Firewalls (bpfilter) . perf_events
Device Drivers

H

® Security
® Intercepting system call, providing process contexts
® Incident response

® Monitoring, Observability
® Increased depth in visibility
® Aggregation of custom metrics

* Networking
° IDS, IPS, Policy Enforcement

® Fulfill packet processing requirements
® Enforce security policy beyond tools like SELinux

® Tracing, Profiling
® Collection of system data using tracepoints, kprobes etc.

shell commands

file open

file create g |

file unlink
change mode

partition table writes /

kernel module load

ssh authentication

crypto initialization

Operating System I

su usage
sudo usage

* Applications

),

/

System Libraries 4

System Call Interface

yd

libpam events

new processes

/ process exec

1

~—~—

A VFS Sockets Scheduler
File Systems TCP/UDP 4 Privileges %
Volume Manager IP Virtual
Block Device Interface Ethernet ‘\ Memory
= P Devige Drivers \ \

invalid packets

socket bind

TCP active connections
TCP passive connections 1CMP suspicious packets
TCP port refused
UDP connections

ptrace

setuid
capability usage

page fault errors
process crash

» ebpfio
%* Presentations from Brenden Greg

X2 The Linux Kernel Internals.

% And many more.

	Slide 1: Linux Kernel e-BPF: concepts and use cases
	Slide 2: About me
	Slide 3: 20 July 2024
	Slide 4: BASICS: Linux System callS
	Slide 5: Linux KERNEL MODULES
	Slide 6: eBPF programs
	Slide 7: eBPF: in-kernel vm
	Slide 8: Using iovisor bcc
	Slide 9
	Slide 10: Bcc vs libbpf
	Slide 11: Bcc internals
	Slide 12: bpftrace Tools
	Slide 13: Kernel instrumentation
	Slide 14: Use cases
	Slide 15: eBPF: use cases
	Slide 16: DeMO Time !!!
	Slide 17: monitoring
	Slide 18: Thank you

