
LINUX KERNEL E-BPF:
CONCEPTS AND USE CASES

Kiran Divekar

25th August 2024

ABOUT ME

• BE Computer from COEP Pune.

• 20 + years of IT industry experience working mainly on Linux Kernel,

System programming in various domains

• Core Contributor in Linux kernel 2.6.36 development cycle (Year: 2010)

• Delivered sessions in many open source events, meetups, Foss.in, Nasscom

webinar.

• Many open source events OpenStack Boston (2017), DockerCon San Franciso

(2018), VMWorld, Cisco Live, Kubernetes Forum Banglore 2020

20 JULY 2024

Source: internet

BASICS: LINUX SYSTEM CALLS

Source: internet

LINUX KERNEL MODULES

Source: internet

EBPF PROGRAMS

Userspace

Program in

C++ or
Python (as

root)

JIT Compiler
Compiled

Program

eBPF VM

Polling Data

BCC Library
Kernel

Source: internet

EBPF: IN-KERNEL VM

• BPF: Original network packet filtering, but extended ability to call
kernel functions (eBPF) - 3.15 kernel

• eBPF : subset of C and compiled into bytecode

• eBPF sandbox. Copy data into sandbox and to perf ring buffer (user
space reads from the buffers)

• BCC - The BPF Compiler Collection, built with LLVM and Clang

• bpftrace - “a high-level tracing language” for eBPF, similar to awk, can

be utilized from command line

• Kernel Code - eBPF’s VM lives in the Linux kernel.

USING IOVISOR BCC

Source: internet

• Load and execute in kernel

• Verifier ensures safety, crash-

free.

• JIT compiler: bytecode ->

machine code.

• Maps:

• Sharing of data

• Ring buffers

• Hash tables, arrays

- Applications

- Openoffice, chrome etc.

- Command language interpreter

- e.g. Bash shell

Apps vs kmods vs eBPF

shell

Tools and applications
Kernel : main OS

- Add kernel module functionality using

insmod

-Device drivers, interrupt handling etc.

-eBPF

- Re-Programming the kernel without

source code changes or loading modules

- Observability, traceability

kernel

BCC VS LIBBPF

Source :Internet

BCC Libbpf + CO-RE

1 Clang front-end to modify user-written BPF programs.

Difficult to find the problem and figure out a solution

directly use the libbpf library provided by kernel

developers to develop BPF programs.

2 Need to remember naming conventions and automatically

generated tracepoint structs.

Libbpf acts like a BPF program loader and relocates, loads,

and checks BPF programs. BPF developers only need to

focus on the BPF programs’ correctness and

performance.

3 When a tool starts, it takes many CPU and memory

resources to compile the BPF program. Complete

libraries need to be available and run at compile time.

No need of system-wide dependencies to be present on

the target machine for running.

It reduces the overall application size as well as resource

consumption on runtime.

4 BCC depends on kernel header packages, which you

must install on each target host.

Libbpf enables you to generate binaries that are compiled

once and can be run anywhere.

BCC INTERNALS

Source :Internet

BPFTRACE TOOLS

KERNEL INSTRUMENTATION

Dynamic

 Kernel space: kprobes

 User space: uprobes

Static:

 Kernel trace points

 USDT (statically

defined)

USE CASES

Source :Internet

EBPF: USE CASES

• Security
• Intercepting system call, providing process contexts
• Incident response

•Monitoring, Observability
• Increased depth in visibility
• Aggregation of custom metrics

• Networking
• IDS, IPS, Policy Enforcement

• Fulfill packet processing requirements
• Enforce security policy beyond tools like SELinux

• Tracing, Profiling
• Collection of system data using tracepoints, kprobes etc.

DEMO TIME !!!

MONITORING

Source :Internet

THANK YOU

❖ ebpf.io

❖ Presentations from Brenden Greg

❖ The Linux Kernel Internals.

❖ And many more.

	Slide 1: Linux Kernel e-BPF: concepts and use cases
	Slide 2: About me
	Slide 3: 20 July 2024
	Slide 4: BASICS: Linux System callS
	Slide 5: Linux KERNEL MODULES
	Slide 6: eBPF programs
	Slide 7: eBPF: in-kernel vm
	Slide 8: Using iovisor bcc
	Slide 9
	Slide 10: Bcc vs libbpf
	Slide 11: Bcc internals
	Slide 12: bpftrace Tools
	Slide 13: Kernel instrumentation
	Slide 14: Use cases
	Slide 15: eBPF: use cases
	Slide 16: DeMO Time !!!
	Slide 17: monitoring
	Slide 18: Thank you

