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ABOUT ME

• BE Computer from COEP Pune.

• 20 + years of IT industry experience working mainly on Linux Kernel,

System programming in various domains

• Core Contributor in Linux kernel 2.6.36 development cycle (Year: 2010)

• Delivered sessions in many open source events, meetups, Foss.in, Nasscom

webinar.

• Many open source events OpenStack Boston (2017), DockerCon San Franciso

(2018),  VMWorld, Cisco Live, Kubernetes Forum Banglore 2020
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BASICS: LINUX SYSTEM CALLS 
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LINUX KERNEL MODULES
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EBPF PROGRAMS
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EBPF: IN-KERNEL VM

• BPF: Original network packet filtering, but extended ability to call 
kernel functions (eBPF) - 3.15 kernel

• eBPF : subset of C and compiled into bytecode

•  eBPF sandbox. Copy data into sandbox and to perf ring buffer (user 
space reads from the buffers)

• BCC - The BPF Compiler Collection, built with LLVM and Clang

• bpftrace - “a high-level tracing language” for eBPF, similar to awk, can 

be utilized from command line

• Kernel Code - eBPF’s VM lives in the Linux kernel.



USING IOVISOR BCC
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• Load and execute in kernel

• Verifier ensures safety, crash-

free.

• JIT compiler: bytecode -> 

machine code.

• Maps:

• Sharing of data

• Ring buffers

• Hash tables, arrays



- Applications

- Openoffice, chrome etc.

- Command language interpreter

- e.g. Bash shell

Apps vs kmods vs eBPF

shell

Tools and applications
Kernel : main OS

- Add kernel module functionality using 

insmod

-Device drivers, interrupt handling etc.

-eBPF

- Re-Programming the kernel without 

source code changes or loading modules

- Observability, traceability

kernel



BCC VS LIBBPF
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BCC Libbpf + CO-RE

1 Clang front-end to modify user-written BPF programs. 

Difficult to find the problem and figure out a solution

directly use the libbpf library provided by kernel 

developers to develop BPF programs. 

2 Need to remember naming conventions and automatically 

generated tracepoint structs.

Libbpf acts like a BPF program loader and relocates, loads, 

and checks BPF programs. BPF developers only need to 

focus on the BPF programs’ correctness and 

performance.

3 When a tool starts, it takes many CPU and memory 

resources to compile the BPF program. Complete 

libraries need to be available and run at compile time.

No need of system-wide dependencies to be present on 

the target machine for running.

It reduces the overall application size as well as resource 

consumption on runtime.

4 BCC depends on kernel header packages, which you 

must install on each target host.

Libbpf enables you to generate binaries that are compiled 

once and can be run anywhere.



BCC INTERNALS
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BPFTRACE TOOLS



KERNEL INSTRUMENTATION

Dynamic

 Kernel space: kprobes

 User space: uprobes

Static:

 Kernel trace points

 USDT (statically 

defined)



USE CASES
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EBPF: USE CASES

• Security
• Intercepting system call, providing process contexts
• Incident response

•Monitoring, Observability
• Increased depth in visibility
• Aggregation of custom metrics

• Networking
• IDS, IPS, Policy Enforcement

• Fulfill packet processing requirements
• Enforce security policy beyond tools like SELinux

• Tracing, Profiling
• Collection of system data using tracepoints, kprobes etc.



DEMO  TIME !!!



MONITORING
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THANK YOU

❖ ebpf.io

❖ Presentations from Brenden Greg

❖ The Linux Kernel Internals.

❖ And many more.
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