cosc NN

Securing the Source: Integrate Fuzzing into
Open Source Software

Speaker: Jiongchi Yu
Contributors: George-Andrei Iosif, Till Kamppeter, Dongge Liu
24/08/2024

I Who We Are

Jiongchi Yu George-Andrei Iosif

Till Kamppeter Dongge Liu

PhD Student Security Engineer Leader @ OpenPrinting Software Engineer
@ SMU @ Snap Inc. Fellow @ the Linux @ Google Inc.

Foundation

COSC 01

I Agenda

OSS Security and Fuzz Testing
OSS-Fuzz in OpenPrinting
Advanced OSS-Fuzz Integration

Fuzzing with Large Language Models

Discussion and Future Works

COSC

02

I Open Source Software Security

@Q . 967
: (e) 7
op MSUSE glt of the total codebases

A contained open source
' B :Q m

.mongoDB éﬂ*
h Ml_-lSQL_
& of codebases contained at least
one open source vulnerability

w s c Open Source Security and Risk Analysis Report 2024 03

https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html#introMenu

I Open Source Software Testing

e Continuous Testing Tools

O

GitHub Actions, Jenkins, Travis CI ...

e Common OSS Testing Methods

O

o O O O

COSC

Static Code Analysis
Unit Testing
Integration Testing
Symbolic Execution

Fuzz Testing

04

I Fuzz Testing

e Aged but effective method: dated back to 1980s
e Blackbox fuzzing, Whitebox fuzzing, Greybox fuzzing

e Generation based fuzzing: BooFuzz , Peach Fuzzer

e Mutation based fuzzing: AFL, LibFuzzer, Honggfuzz ...

Random Input ®B

w s c Fuzzer Tested Software o

https://github.com/jtpereyda/boofuzz
https://github.com/mozillasecurity/peach
https://github.com/google/AFL
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/honggfuzz

Bug Example

har* hello(const char* name) {

char* buffer = malloc(20000) ;
if (buffer == NULL) {

return NULL: . .
} Function with
strcpy(buffer, "Hello, "); f
strcat(buffer, name); / f Buffer Overflow Bug

return buffer;

o() {
ar* test_cases[] = {"namel", "name2", "name3", "name4", "name5"};
i< si f(test_cases) / sizeof(test_cases[@]); it+t+) {
3r* result = hello(test_cases[i]);
assert(strncmp(result, expected_prefix, strlen(expected_prefix)) == 0);

Unit Testing

free(result)
return 0;

wSC Fuzzing: Infinite Input

I Fuzzing Workflow

Bugs

Coverage Collection

Feedback
1. Write Fuzz Harness l |
Coverage
2. Instrumentation
3. Seed Selection Test Cases
4. Input Mutation — »
5. Execution Input Generator Test Software
6.
7.

Bug Detection and Post Analysis

COSC 07

What Are We Fuzzing About?

e Fuzzer Evaluation Metrics
O Code/Path/Block Coverage
O Unique Bug Count
O Fuzz Efficiency (TP/FP Ratio)
O
e Developing/Research Directions in Fuzzing
O Overcome Coverage Plateau (Magic Number, Complex Logic ...)
O Improve Fuzzing Extensibility (Specific Target, Fuzz Automation)

O Increase Fuzzing Efficiency (Distributed Fuzzing, Test Case Selection)

COSC 08

Continuous Fuzzing: OSS-Fuzz

e Simplify the Fuzzing Workflow
O Build with preset fuzzing engines
e Free Service for Developers
O Run fuzzers at scale
e Automated Post-Analysis Process
O Fuzz result reporting (crashes, timeouts, etc.)

O Coverage visualization

COSC

09

Continuous Fuzzing: OSS-Fuzz

1. Write fuzzers

8. Fix bugs

Developer

COSC

- Upstream project

google/oss-fuzz

k1 Eync and
I:ll.llld fmm BuiIdEr
(Cloud Build)
GCS bucket
5. Download
4. Upload and fuzz
b - b — ClusterFuzz
2. Commit build configs 2 e
| Verify fixes
PN
.I 4
\T/ — Track deadlines
1 m - Sheriffbot
” |

Issue tracker (monorail)

10

Continuous Fuzzing: OSS-Fuzz

e Since 2016, OSS-Fuzz had found 12000+ vulnerabilities and 36000+

bugs across 1000+ projects

e Improve with Fuzz Introspector and OSS-Fuzz-Gen

THE
ARTBLEED
BUG

In response to
CVE-2014-0160

COSC

11

https://google.github.io/oss-fuzz/
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://github.com/ossf/fuzz-introspector
https://github.com/google/oss-fuzz-gen
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

I OSS-Fuzz in OpenPrinting

Open Printing

making printing just work

COSC

Nearly 2/3 of the all 37 OpenPrinting
projects are mainly implemented in C/C++
OpenPrinting projects involves multiple test
input types

O Cstructures, Image, PDF, Argy, etc.
OpenPrinting has integrates three main
projects into OSS-Fuzz workflow

O cups

O libcups

O cups-filters 12

I Previous OpenPrinting Testing

e Mainly unit tests written by developers
e One manual written fuzz driver in cups by for testing libipp

® AFL build scripts for libcups

NOT ENOUGH FUZZING!

COSC

13

I Our Progress

e Integrate three projects into OSS-Fuzz

O 35 issues reported, 22 resolved

O 65% average coverage, nearly 100% static reachability
e Enable Fuzz Introspector

e Adopt OSS-Fuzz-Gen

Code Coverage (functions) % Static reachability %

g
Reachability

40

14

I How To Integrate

1. Prepare fuzz harnesses and build locally
2. Create project configuration and merge into OSS-Fuzz

3. Leave everything else to OSS-Fuzz...

COSC

15

Prepare Fuzz Harnesses

Replace main function with LLVMFuzzerTestOnelnput and build

harness locally
int LLVMFuzzerTestOnelnput(const uint8_t

if (Size == @) {
return 0;

1
J

memcpy((char *)ippdata.wbuffer, (char *)Data, Size);
ippdata.wused = Size;

const char *filename = "/tmp/tmp.ipp";
if ((fp = cupsFileOpen(filename, "w")) == NULL
{
Teturn 1:

1
J

sc cupsFileWrite(fp, (char *)buffer, ippdata.wused),
' cupsFileClose(fp);

Create OSS-Fuzz Project Configs

language: ¢

e Dockerfile e
O Dependencies for building the harnesses :

e project.yaml

e build.sh

O Shell script to build harnesses
O Can replace with customized path in

Dockerfile

COSC

Our Suggested Strategies

Internal discussion for prioritized projects
Start from existing unit and integration tests

Identify important or complex functions with domain knowledge

Refer from coverage information for less tested functions

COSC

18

I Fuzzing Statistics

Issue 69493: libcups:fuzzipp: Heap-buffer-overflow in ippWriteIO
Reported by ClusterFuzz-External on Fri, Jun 7, 2024, 10:50 PM GMT+8

°® OSS'FUZZ DaSh boa rd Detailed Report: https://oss-fuzz.com/testcase?key=4664958494244864

Project: libcups
O Bu ||d Iogs Fuzzing Engine: IFbFuzzer
Fuzz Target: fuzzipp
Job Type: libfuzzer_asan_libcups

& Code

O POtentIal bug Platform Id: linux
information oo
Crash State:
ippWriteIO
e Fuzz Introspector fuzzipp.c

Sanitizer: address (ASAN)

Visualization

Recommended Security Severity: Medium

Crash Revision: https://oss-fuzz.com/revisions?job=libfuzzer_asan_libcups&revision=202406070608

Reproducer Testcase: https://oss-fuzz.com/download?testcase_id=4664958494244864

w S ‘ Issue filed automatically.

I Fuzz Introspector Visualization

Report generation date: 2024-08-20

vProject overview: cups

Function name s+ source code lines, source lines hits percentage hits

ippReadIO 479 448 93.52%
High level conclusions
cups_fill 201 177 88.05%
> Fuzzers reach 98.33% of cyclomatic complexity.
cupsLangGet 201 153 76.11%
> Fuzzers reach 98.70% of all functions.
cups_array_add 92 57 61.95%
> Fuzzers reach 66.23% code coverage.
ippSetvalueTag 79 63 79.74%
> Fuzzer fuzz_cups is blocked:
cups_array_find 76 63 82.89%
> Fuzzer fuzz_raster is blocked:
_— - cups_globals_alloc 75 45 60.0%
Reachability and coverage overview
_cupsMessageload 75 18 24.0%
Functions Cyclomatic Runtime code
statically complexity coverage of ipp_free_values 68 67 98.52%
reachable by statically functions -7
fuzzers reachable by
fuzzers 66.0% cupsFileClose 66 25 37.87%

98.0%

Previous 1 2 3 4 5 6 Next

I Fuzz Introspector Visualization

Coverage Report

View results by: Directories | Files

PATH LINE COVERAGE FUNCTION COVERAGE REGION COVERAGE
cups/. 11.34% (3028/26708) 13.77% (99/719) 11.96% (2214/18511)
ossfuzz/ 76.19% (144/189) 87.50% (7/8) 81.11% (73/90)
TOTALS 11.79% (3172/26897) 14.58% (106/727) 12.30% (2287/18601)

vFuzzers overview

Columns - ROWS - Search table

Fuzzer Fuzzer filename Functions Reached+ Functions unreached¢ Fuzzer depth+ Filesreached¢ Basicblocks reached¢ Cyclomatic complexity# Details #
fuzz_array /src/cups/ossfuzz/fuzz_array.c 33 6 = 3 304 160 fuzz_array.c
fuzz_cups /src/cups/ossfuzz/fuzz_cups.c 97 9 15 15 1130 646 fuzz_cups.c
fuzz_ipp /src/cups/ossfuzz/fuzz_ipp.c 185 7 16 18 2152 1213 fuzz_ipp.c
fuzz_raster /src/cups/ossfuzz/fuzz_raster.c 97 8 17 15 757 472 fuzz_rasterc

Previous 1 Next

I Fuzz Introspector Visualization

All functions overview

If you implement fuzzers for these functions, the status of all functions in the project will be:

Search table

Columns - Rows -

Func lines
hit %

Cyclomatic

Func name ¢ Functions filename ¢ Reached by Fuzzers ¢

complexity

Functions
reached

Reached by
functions

Accumulated
cyclomatic complexity

Undiscovered
complexity

/src/cups/cups/

_cupsGetPassword
usersys.c

0 0.0% 23

std: :numeric_limits:: (usc/IDIGEEiXEs Bay

linux-gnu/9/..1..1.10.f 0 0.0% 2
include/c++/9/limits
1k
z /src/cups/ossfuzz/
generate_fuzz_array_data B T 100.0% B
= = fuzz_helpers.cpp * VIEW LIST
2!
cupsArrayAdd /sro/cups/cups/array.c v VIEW LIST 3
22
cups_array_add : 65.21%
cups_ y_ /src/cups/cups/array.c 5 oamEs 65.21% 21

COSC

80

19

384

43

40

33

21

I Advanced OSS-Fuzz Integration

Structured Input
Dynamic Linking
High Quality Seed

Mutate Dictionary

Customized Fuzz Oracle

COSC

22

I 0OSS-Fuzz-Gen

4) Code to Target Prompt
Build and
Evaluate Fuzz Target
08S-Fuzz &
Introspector Logs Framework Compilation Errors
Build and Revised Fuzz
Evaluate Target
- d b B @

Actions occur only if original fuzz target fails to compile

23

I 0OSS-Fuzz-Gen

e Few-shot prompt with Gemini, GPTs, etc.

e Generate config with assistance of Fuzz-Introspector

e Has included 1300+ benchmarks from 297+ OSS projects

COSC

% python -m data_prep.introspector libcups -m 5
INFO:__main__:Extracting functions using oracle far-reach-low-coverage.
INFO:__main__:Extracting functions using oracle optimal-targets.
ERROR:__main__:Failed to get functions from FI:
https://introspector.oss-fuzz.com/api/optimal-targets?project=1ibcupsé&e
xclude-static-functions=True&only-referenced-functions=False&only-with-
header-file-declaration=True
{'functions': [], 'result': 'success'}
INFO:data_prep.project_src:Retrieving human-written fuzz targets of lib
cups from local Docker build.

INFO:data_prep.project_src:Building project image: python3 /tmp/tmp8aad

8r7_/infra/helper.py build_image --cache --no-pull libcups
INFO:data_prep.project_src:Done building image.
INFO:data_prep.project_src:Done copying libcups /src to /tmp/tmp6rgnxya
i/out.

INFO:__main__:Fuzz target file found for project libcups: /src/fuzzing/
projects/libcups/fuzzer/fuzzipp.c

INFO:__main__:Fuzz target binary found for project libcups: None

INFO:__main__:Function signature to fuzz: const char * _cupsGetPassword
(const char *)
INFO:__main__:Length of potential targets: 1

24

https://security.googleblog.com/2024/01/scaling-security-with-ai-from-detection.html
https://security.googleblog.com/2024/01/scaling-security-with-ai-from-detection.html
https://security.googleblog.com/2024/01/scaling-security-with-ai-from-detection.html
https://security.googleblog.com/2024/01/scaling-security-with-ai-from-detection.html
https://security.googleblog.com/2024/01/scaling-security-with-ai-from-detection.html

OSS-Fuzz-Gen: Example in OpenPrinting

e Function

O Function Name "functions™":
- "name": "_cupsGetPassword"
"params":
O Parameter Type e
S Eype -t hooilie
O Return Type "return_type": "void"
"signature": "const char * _cupsGetPassword(const char *)"
O Slgnature "is test_benchmark": false
"language”: "c++"
® Project Language j'prc:]ect”: ”llbcups”.
'target_name": "fuzzipp"
"target_path": "/src/fuzzing/projects/libcups/fuzzer/fuzzipp.c"
e Fuzz Target Name = = : =

® Fuzzer Source Code Path

COSC 25

I Use LLM for Fuzz Driver Generation

e Prompt Design
O Task Description, Library Information, Example Code, API
Specifications, Error Building Information, Errored Code
e Promising Temperature
O Around 0.5
e Backbone LLM

AL =
& Cori font .
“ .

coder
GPT-4

How Effective Are They? Exploring Large Language Model Based 26
Fuzz Driver Generation

https://arxiv.org/abs/2307.12469
https://arxiv.org/abs/2307.12469

OSS-Fuzz Integration Bounty

® OSS-Fuzz Initial Integration Up to $5,000
e Ideal Fuzzing Integration Up to $15,000
O C(IFuzz

O Coverage > 50%
O > 2 fixed bugs
e Line Coverage Improvements Up to $1,000 per 10% increase
e Fuzz Introspector Up to $5,000 per project
e New Sanitizer, Impactful Vulnerability Detected, FuzzBench Integration Reward
Up to $11,337

COSC 27

Discussion

Towards Intelligent OpenPrinting Security Analysis
e Threat Model, Characterized Attack Surfaces
e Upstream/Downstream Vulnerability Tracing
e Automated Exploit Generation and Evolution

® Fuzzer Prioritization and False Positive Result Elimination

COSC

28

I Contribute to OpenPrinting Security

e Do not hesitate to contact developers to join testing development

e Highly recommend to join the OSS-Fuzz and OSS-Fuzz-Gen integration

e Security auditing / research for OpenPrinting projects

COSC

29

https://lists.linux-foundation.org/mailman/listinfo/printing-architecture

Thanks You !

Project Link: https://github.com/OpenPrinting/fuzzing

Feel free to ask questions or contact me after the conference :)
Contacts: Jiongchi Yu (ttfish@ttfish.cc)

https://github.com/OpenPrinting/fuzzing
mailto:ttfish@ttfish.cc

	Securing the Source: Integrate Fuzzing into Open Source Softwa
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

